<< Chapter < Page Chapter >> Page >
(a) A payload having an umbrella-shaped solar sail attached to it is shown. The direction of movement of payload and direction of incident photons are shown using arrows. (b) A photograph of the top view of a silvery space sail.
(a) Space sails have been proposed that use the momentum of sunlight reflecting from gigantic low-mass sails to propel spacecraft about the solar system. A Russian test model of this (the Cosmos 1) was launched in 2005, but did not make it into orbit due to a rocket failure. (b) A U.S. version of this, labeled LightSail-1, is scheduled for trial launches in the first part of this decade. It will have a 40-m 2 sail. (credit: Kim Newton/NASA)

Relativistic photon momentum

There is a relationship between photon momentum p size 12{p} {} and photon energy E size 12{E} {} that is consistent with the relation given previously for the relativistic total energy of a particle as E 2 = ( pc ) 2 + ( mc ) 2 size 12{E rSup { size 8{2} } = \( ital "pc" \) rSup { size 8{2} } + \( ital "mc" \) rSup { size 8{2} } } {} . We know m size 12{m} {} is zero for a photon, but p size 12{p} {} is not, so that E 2 = ( pc ) 2 + ( mc ) 2 size 12{E rSup { size 8{2} } = \( ital "pc" \) rSup { size 8{2} } + \( ital "mc" \) rSup { size 8{2} } } {} becomes

E = pc , size 12{E = ital "pc"} {}

or

p = E c (photons). size 12{p = { {E} over {c} } } {}

To check the validity of this relation, note that E = hc / λ size 12{E = ital "hc"/λ} {} for a photon. Substituting this into p = E / c size 12{p = E"/c"} {} yields

p = hc / λ / c = h λ , size 12{p = left ( ital "hc"/λ right )/c = { {h} over {λ} } } {}

as determined experimentally and discussed above. Thus, p = E / c size 12{p = E"/c"} {} is equivalent to Compton’s result p = h / λ size 12{p = h/λ} {} . For a further verification of the relationship between photon energy and momentum, see [link] .

Photon detectors

Almost all detection systems talked about thus far—eyes, photographic plates, photomultiplier tubes in microscopes, and CCD cameras—rely on particle-like properties of photons interacting with a sensitive area. A change is caused and either the change is cascaded or zillions of points are recorded to form an image we detect. These detectors are used in biomedical imaging systems, and there is ongoing research into improving the efficiency of receiving photons, particularly by cooling detection systems and reducing thermal effects.

Photon energy and momentum

Show that p = E / c size 12{p = E"/c"} {} for the photon considered in the [link] .

Strategy

We will take the energy E size 12{E} {} found in [link] , divide it by the speed of light, and see if the same momentum is obtained as before.

Solution

Given that the energy of the photon is 2.48 eV and converting this to joules, we get

p = E c = ( 2.48 eV ) ( 1 . 60 × 10 –19 J/eV ) 3 . 00 × 10 8 m/s = 1 . 33 × 10 –27 kg m/s . size 12{p = { {E} over {c} } = { { \( 2 "." "48 eV" \) \( 1 "." "60 " times " 10" rSup { size 8{"–19"} } " J/eV" \) } over {3 "." "00 " times " 10" rSup { size 8{8} } " m/s"} } =" 1" "." "33 " times " 10" rSup { size 8{"–27"} } " kg " cdot " m/s"} {}

Discussion

This value for momentum is the same as found before (note that unrounded values are used in all calculations to avoid even small rounding errors), an expected verification of the relationship p = E / c size 12{p = E"/c"} {} . This also means the relationship between energy, momentum, and mass given by E 2 = ( pc ) 2 + ( mc ) 2 size 12{E rSup { size 8{2} } = \( ital "pc" \) rSup { size 8{2} } + \( ital "mc" \) rSup { size 8{2} } } {} applies to both matter and photons. Once again, note that p size 12{p} {} is not zero, even when m size 12{m} {} is.

Got questions? Get instant answers now!

Problem-solving suggestion

Note that the forms of the constants h = 4 . 14 × 10 –15 eV s size 12{h =" 4" "." "14 " times " 10" rSup { size 8{"–15"} } " eV " cdot " s"} {} and hc = 1240 eV nm size 12{ ital "hc" =" 1240 eV " cdot " nm"} {} may be particularly useful for this section’s Problems and Exercises.

Section summary

  • Photons have momentum, given by p = h λ size 12{p = { {h} over {λ} } } {} , where λ size 12{λ} {} is the photon wavelength.
  • Photon energy and momentum are related by p = E c size 12{p = { {E} over {c} } } {} , where E = hf = hc / λ size 12{E = ital "hf"= ital "hc"/λ } {} for a photon.

Conceptual questions

Which formula may be used for the momentum of all particles, with or without mass?

Got questions? Get instant answers now!

Is there any measurable difference between the momentum of a photon and the momentum of matter?

Got questions? Get instant answers now!

Why don’t we feel the momentum of sunlight when we are on the beach?

Got questions? Get instant answers now!

Problems&Exercises

(a) Find the momentum of a 4.00-cm-wavelength microwave photon. (b) Discuss why you expect the answer to (a) to be very small.

(a) 1.66 × 10 32 kg m/s size 12{1 "." "66" times "10" rSup { size 8{ - "32"} } `"kg" cdot "m/s"} {}

(b) The wavelength of microwave photons is large, so the momentum they carry is very small.

Got questions? Get instant answers now!

(a) What is the momentum of a 0.0100-nm-wavelength photon that could detect details of an atom? (b) What is its energy in MeV?

Got questions? Get instant answers now!

(a) What is the wavelength of a photon that has a momentum of 5 . 00 × 10 29 kg m/s size 12{5 "." "00" times "10" rSup { size 8{ - "29"} } `"kg" cdot "m/s"} {} ? (b) Find its energy in eV.

(a) 13.3 μm

(b) 9 . 38 × 10 -2 eV

Got questions? Get instant answers now!

(a) A γ size 12{γ} {} -ray photon has a momentum of 8 . 00 × 10 21 kg m/s size 12{8 "." "00" times "10" rSup { size 8{ - "21"} } `"kg" cdot "m/s"} {} . What is its wavelength? (b) Calculate its energy in MeV.

Got questions? Get instant answers now!

(a) Calculate the momentum of a photon having a wavelength of 2 . 50 μm size 12{2 "." "50"" μm"} {} . (b) Find the velocity of an electron having the same momentum. (c) What is the kinetic energy of the electron, and how does it compare with that of the photon?

(a) 2 . 65 × 10 28 kg m/s size 12{2 "." "65" times "10" rSup { size 8{ - "28"} } `"kg" cdot "m/s"} {}

(b) 291 m/s

(c) electron 3 . 86 × 10 26 J size 12{3 "." "86" times "10" rSup { size 8{ - "26"} } " J"} {} , photon 7 . 96 × 10 20 J size 12{7 "." "96" times "10" rSup { size 8{ - "20"} } " J"} {} , ratio 2 . 06 × 10 6 size 12{2 "." "06" times "10" rSup { size 8{6} } } {}

Got questions? Get instant answers now!

Repeat the previous problem for a 10.0-nm-wavelength photon.

Got questions? Get instant answers now!

(a) Calculate the wavelength of a photon that has the same momentum as a proton moving at 1.00% of the speed of light. (b) What is the energy of the photon in MeV? (c) What is the kinetic energy of the proton in MeV?

(a) 1 . 32 × 10 13 m size 12{1 "." "32" times "10" rSup { size 8{ - "13"} } " m"} {}

(b) 9.39 MeV

(c) 4.70 × 10 2 MeV size 12{4 "." "70" times "10" rSup { size 8{ - 2} } " MeV"} {}

Got questions? Get instant answers now!

(a) Find the momentum of a 100-keV x-ray photon. (b) Find the equivalent velocity of a neutron with the same momentum. (c) What is the neutron’s kinetic energy in keV?

Got questions? Get instant answers now!

Take the ratio of relativistic rest energy, E = γmc 2 mc 2 , to relativistic momentum, p = γ mu size 12{p=γ ital "mu"} {} , and show that in the limit that mass approaches zero, you find E / p = c size 12{E/p=c} {} .

E = γmc 2 mc 2 and P = γmu , so

E P = γmc 2 γmu = c 2 u .

As the mass of particle approaches zero, its velocity u will approach c , so that the ratio of energy to momentum in this limit is

lim m →0 E P = c 2 c = c

which is consistent with the equation for photon energy.

Got questions? Get instant answers now!

Construct Your Own Problem

Consider a space sail such as mentioned in [link] . Construct a problem in which you calculate the light pressure on the sail in N/m 2 size 12{"N/m" rSup { size 8{2} } } {} produced by reflecting sunlight. Also calculate the force that could be produced and how much effect that would have on a spacecraft. Among the things to be considered are the intensity of sunlight, its average wavelength, the number of photons per square meter this implies, the area of the space sail, and the mass of the system being accelerated.

Got questions? Get instant answers now!

Unreasonable Results

A car feels a small force due to the light it sends out from its headlights, equal to the momentum of the light divided by the time in which it is emitted. (a) Calculate the power of each headlight, if they exert a total force of 2 . 00 × 10 2 N size 12{2 "." "00" times "10" rSup { size 8{ - 2} } " N"} {} backward on the car. (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?

(a) 3 . 00 × 10 6 W size 12{3 "." "00" times "10" rSup { size 8{6} } " W"} {}

(b) Headlights are way too bright.

(c) Force is too large.

Got questions? Get instant answers now!

Questions & Answers

how do you get the 2/50
Abba Reply
number of sport play by 50 student construct discrete data
Aminu Reply
width of the frangebany leaves on how to write a introduction
Theresa Reply
Solve the mean of variance
Veronica Reply
Step 1: Find the mean. To find the mean, add up all the scores, then divide them by the number of scores. ... Step 2: Find each score's deviation from the mean. ... Step 3: Square each deviation from the mean. ... Step 4: Find the sum of squares. ... Step 5: Divide the sum of squares by n – 1 or N.
kenneth
what is error
Yakuba Reply
Is mistake done to something
Vutshila
Hy
anas
hy
What is the life teble
anas
hy
Jibrin
statistics is the analyzing of data
Tajudeen Reply
what is statics?
Zelalem Reply
how do you calculate mean
Gloria Reply
diveving the sum if all values
Shaynaynay
let A1,A2 and A3 events be independent,show that (A1)^c, (A2)^c and (A3)^c are independent?
Fisaye Reply
what is statistics
Akhisani Reply
data collected all over the world
Shaynaynay
construct a less than and more than table
Imad Reply
The sample of 16 students is taken. The average age in the sample was 22 years with astandard deviation of 6 years. Construct a 95% confidence interval for the age of the population.
Aschalew Reply
Bhartdarshan' is an internet-based travel agency wherein customer can see videos of the cities they plant to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400 a. what is the probability of getting more than 12,000 hits? b. what is the probability of getting fewer than 9,000 hits?
Akshay Reply
Bhartdarshan'is an internet-based travel agency wherein customer can see videos of the cities they plan to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400. a. What is the probability of getting more than 12,000 hits
Akshay
1
Bright
Sorry i want to learn more about this question
Bright
Someone help
Bright
a= 0.20233 b=0.3384
Sufiyan
a
Shaynaynay
How do I interpret level of significance?
Mohd Reply
It depends on your business problem or in Machine Learning you could use ROC- AUC cruve to decide the threshold value
Shivam
how skewness and kurtosis are used in statistics
Owen Reply
yes what is it
Taneeya
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask