<< Chapter < Page Chapter >> Page >

Relating E size 12{E} {} -field and B size 12{B} {} -field strengths

There is a relationship between the E size 12{E} {} - and B size 12{B} {} -field strengths in an electromagnetic wave. This can be understood by again considering the antenna just described. The stronger the E size 12{E} {} -field created by a separation of charge, the greater the current and, hence, the greater the B size 12{B} {} -field created.

Since current is directly proportional to voltage (Ohm’s law) and voltage is directly proportional to E size 12{E} {} -field strength, the two should be directly proportional. It can be shown that the magnitudes of the fields do have a constant ratio, equal to the speed of light. That is,

E B = c size 12{ { {E} over {B} } =c} {}

is the ratio of E size 12{E} {} -field strength to B size 12{B} {} -field strength in any electromagnetic wave. This is true at all times and at all locations in space. A simple and elegant result.

Calculating B size 12{B} {} -field strength in an electromagnetic wave

What is the maximum strength of the B size 12{B} {} -field in an electromagnetic wave that has a maximum E size 12{E} {} -field strength of 1000 V/m size 12{"1000" {V} slash {m} } {} ?

Strategy

To find the B size 12{B} {} -field strength, we rearrange the above equation to solve for B size 12{B} {} , yielding

B = E c . size 12{B= { {E} over {c} } } {}

Solution

We are given E size 12{E} {} , and c size 12{c} {} is the speed of light. Entering these into the expression for B size 12{B} {} yields

B = 1000 V/m 3 . 00 × 10 8 m/s = 3 . 33 × 10 - 6 T , size 12{B = { {"1000 V/m"} over {3 "." "00 " times " 10" rSup { size 8{8} } " m/s"} } =" 3" "." "33" times "10" rSup { size 8{ +- 6} } " T"} {}

Where T stands for Tesla, a measure of magnetic field strength.

Discussion

The B size 12{B} {} -field strength is less than a tenth of the Earth’s admittedly weak magnetic field. This means that a relatively strong electric field of 1000 V/m is accompanied by a relatively weak magnetic field. Note that as this wave spreads out, say with distance from an antenna, its field strengths become progressively weaker.

Got questions? Get instant answers now!

The result of this example is consistent with the statement made in the module Maxwell’s Equations: Electromagnetic Waves Predicted and Observed that changing electric fields create relatively weak magnetic fields. They can be detected in electromagnetic waves, however, by taking advantage of the phenomenon of resonance, as Hertz did. A system with the same natural frequency as the electromagnetic wave can be made to oscillate. All radio and TV receivers use this principle to pick up and then amplify weak electromagnetic waves, while rejecting all others not at their resonant frequency.

Take-home experiment: antennas

For your TV or radio at home, identify the antenna, and sketch its shape. If you don’t have cable, you might have an outdoor or indoor TV antenna. Estimate its size. If the TV signal is between 60 and 216 MHz for basic channels, then what is the wavelength of those EM waves?

Try tuning the radio and note the small range of frequencies at which a reasonable signal for that station is received. (This is easier with digital readout.) If you have a car with a radio and extendable antenna, note the quality of reception as the length of the antenna is changed.

Phet explorations: radio waves and electromagnetic fields

Broadcast radio waves from KPhET. Wiggle the transmitter electron manually or have it oscillate automatically. Display the field as a curve or vectors. The strip chart shows the electron positions at the transmitter and at the receiver.

Radio Waves and Electromagnetic Fields

Section summary

  • Electromagnetic waves are created by oscillating charges (which radiate whenever accelerated) and have the same frequency as the oscillation.
  • Since the electric and magnetic fields in most electromagnetic waves are perpendicular to the direction in which the wave moves, it is ordinarily a transverse wave.
  • The strengths of the electric and magnetic parts of the wave are related by
    E B = c , size 12{ { {E} over {B} } = ital " c"} {}

    which implies that the magnetic field B size 12{B} {} is very weak relative to the electric field E size 12{E} {} .

Conceptual questions

The direction of the electric field shown in each part of [link] is that produced by the charge distribution in the wire. Justify the direction shown in each part, using the Coulomb force law and the definition of E = F / q size 12{E= {F} slash {q} } {} , where q size 12{q} {} is a positive test charge.

Got questions? Get instant answers now!

Is the direction of the magnetic field shown in [link] (a) consistent with the right-hand rule for current (RHR-2) in the direction shown in the figure?

Got questions? Get instant answers now!

Why is the direction of the current shown in each part of [link] opposite to the electric field produced by the wire’s charge separation?

Got questions? Get instant answers now!

In which situation shown in [link] will the electromagnetic wave be more successful in inducing a current in the wire? Explain.

Part a of the diagram shows an electromagnetic wave approaching a long straight vertical wire. The wave is shown with the variation of two components E and B. E is a sine wave in vertical plane with small arrows showing the vibrations of particles in the plane. B is a sine wave in a horizontal plane perpendicular to the E wave. The B wave has arrows to show the vibrations of particles in the plane. The waves are shown intersecting each other at the junction of the planes because E and B are perpendicular to each other. The direction of propagation of wave is shown perpendicular to E and B waves. Part b of the diagram shows an electromagnetic wave approaching a long straight vertical wire. The wave is shown with the variation of two components E and B. E is a sine wave in horizontal plane with small arrows showing the vibrations of particles in the plane. B is a sine wave in a vertical plane perpendicular to the E wave. The B wave has arrows to show the vibrations of particles in the plane. The waves are shown intersecting each other at the junction of the planes because E and B are perpendicular to each other. The direction of propagation of wave is shown perpendicular to E and B waves.
Electromagnetic waves approaching long straight wires.
Got questions? Get instant answers now!

In which situation shown in [link] will the electromagnetic wave be more successful in inducing a current in the loop? Explain.

Part a of the diagram shows an electromagnetic wave approaching a receiver loop connected to a tuner. The wave is shown with the variation of two components E and B. E is a sine wave in vertical plane with small arrows showing the vibrations of particles in the plane. B is a sine wave in a horizontal plane perpendicular to the E wave. The B wave has arrows to show the vibrations of particles in the plane. The waves are shown intersecting each other at the junction of the planes because E and B are perpendicular to each other. The direction of propagation of wave is shown perpendicular to E and B waves. Part b of the diagram shows an electromagnetic wave approaching a receiver loop connected to a tuner. The wave is shown with the variation of two components E and B. E is a sine wave in horizontal plane with small arrows showing the vibrations of particles in the plane. B is a sine wave in a vertical plane perpendicular to the E wave. The B wave has arrows to show the vibrations of particles in the plane. The waves are shown intersecting each other at the junction of the planes because E and B are perpendicular to each other. The direction of propagation of wave is shown perpendicular to E and B waves.
Electromagnetic waves approaching a wire loop.
Got questions? Get instant answers now!

Should the straight wire antenna of a radio be vertical or horizontal to best receive radio waves broadcast by a vertical transmitter antenna? How should a loop antenna be aligned to best receive the signals? (Note that the direction of the loop that produces the best reception can be used to determine the location of the source. It is used for that purpose in tracking tagged animals in nature studies, for example.)

Got questions? Get instant answers now!

Under what conditions might wires in a DC circuit emit electromagnetic waves?

Got questions? Get instant answers now!

Give an example of interference of electromagnetic waves.

Got questions? Get instant answers now!

[link] shows the interference pattern of two radio antennas broadcasting the same signal. Explain how this is analogous to the interference pattern for sound produced by two speakers. Could this be used to make a directional antenna system that broadcasts preferentially in certain directions? Explain.

The picture shows an overhead view of a radio broadcast antenna sending signals in the form of waves. Two waves are shown in the diagram with concentric circular wave fonts. The crest and trough are marked as bold and dashed circles respectively. The points where the bold circles of the two different waves meet are marked as points of constructive interference. Arrows point outward from the antenna, joining these points. These arrows show the directions of constructive interference.
An overhead view of two radio broadcast antennas sending the same signal, and the interference pattern they produce.
Got questions? Get instant answers now!

Can an antenna be any length? Explain your answer.

Got questions? Get instant answers now!

Problems&Exercises

What is the maximum electric field strength in an electromagnetic wave that has a maximum magnetic field strength of 5 . 00 × 10 4 T size 12{5 "." "00"´"10" rSup { size 8{-4} } " T"} {} (about 10 times the Earth’s)?

150 kV/m

Got questions? Get instant answers now!

The maximum magnetic field strength of an electromagnetic field is 5 × 10 6 T size 12{5 times "10" rSup { size 8{ - 6} } T} {} . Calculate the maximum electric field strength if the wave is traveling in a medium in which the speed of the wave is 0.75 c size 12{c} {} .

Got questions? Get instant answers now!

Verify the units obtained for magnetic field strength B in [link] (using the equation B = E c ) are in fact teslas (T).

Got questions? Get instant answers now!

Questions & Answers

how did you get 1640
Noor Reply
If auger is pair are the roots of equation x2+5x-3=0
Peter Reply
Wayne and Dennis like to ride the bike path from Riverside Park to the beach. Dennis’s speed is seven miles per hour faster than Wayne’s speed, so it takes Wayne 2 hours to ride to the beach while it takes Dennis 1.5 hours for the ride. Find the speed of both bikers.
MATTHEW Reply
420
Sharon
from theory: distance [miles] = speed [mph] × time [hours] info #1 speed_Dennis × 1.5 = speed_Wayne × 2 => speed_Wayne = 0.75 × speed_Dennis (i) info #2 speed_Dennis = speed_Wayne + 7 [mph] (ii) use (i) in (ii) => [...] speed_Dennis = 28 mph speed_Wayne = 21 mph
George
Let W be Wayne's speed in miles per hour and D be Dennis's speed in miles per hour. We know that W + 7 = D and W * 2 = D * 1.5. Substituting the first equation into the second: W * 2 = (W + 7) * 1.5 W * 2 = W * 1.5 + 7 * 1.5 0.5 * W = 7 * 1.5 W = 7 * 3 or 21 W is 21 D = W + 7 D = 21 + 7 D = 28
Salma
Devon is 32 32​​ years older than his son, Milan. The sum of both their ages is 54 54​. Using the variables d d​ and m m​ to represent the ages of Devon and Milan, respectively, write a system of equations to describe this situation. Enter the equations below, separated by a comma.
Aaron Reply
find product (-6m+6) ( 3m²+4m-3)
SIMRAN Reply
-42m²+60m-18
Salma
what is the solution
bill
how did you arrive at this answer?
bill
-24m+3+3mÁ^2
Susan
i really want to learn
Amira
I only got 42 the rest i don't know how to solve it. Please i need help from anyone to help me improve my solving mathematics please
Amira
Hw did u arrive to this answer.
Aphelele
hi
Bajemah
-6m(3mA²+4m-3)+6(3mA²+4m-3) =-18m²A²-24m²+18m+18mA²+24m-18 Rearrange like items -18m²A²-24m²+42m+18A²-18
Salma
complete the table of valuesfor each given equatio then graph. 1.x+2y=3
Jovelyn Reply
x=3-2y
Salma
y=x+3/2
Salma
Hi
Enock
given that (7x-5):(2+4x)=8:7find the value of x
Nandala
3x-12y=18
Kelvin
please why isn't that the 0is in ten thousand place
Grace Reply
please why is it that the 0is in the place of ten thousand
Grace
Send the example to me here and let me see
Stephen
A meditation garden is in the shape of a right triangle, with one leg 7 feet. The length of the hypotenuse is one more than the length of one of the other legs. Find the lengths of the hypotenuse and the other leg
Marry Reply
how far
Abubakar
cool u
Enock
state in which quadrant or on which axis each of the following angles given measure. in standard position would lie 89°
Abegail Reply
hello
BenJay
hi
Method
I am eliacin, I need your help in maths
Rood
how can I help
Sir
hmm can we speak here?
Amoon
however, may I ask you some questions about Algarba?
Amoon
hi
Enock
what the last part of the problem mean?
Roger
The Jones family took a 15 mile canoe ride down the Indian River in three hours. After lunch, the return trip back up the river took five hours. Find the rate, in mph, of the canoe in still water and the rate of the current.
cameron Reply
Shakir works at a computer store. His weekly pay will be either a fixed amount, $925, or $500 plus 12% of his total sales. How much should his total sales be for his variable pay option to exceed the fixed amount of $925.
mahnoor Reply
I'm guessing, but it's somewhere around $4335.00 I think
Lewis
12% of sales will need to exceed 925 - 500, or 425 to exceed fixed amount option. What amount of sales does that equal? 425 ÷ (12÷100) = 3541.67. So the answer is sales greater than 3541.67. Check: Sales = 3542 Commission 12%=425.04 Pay = 500 + 425.04 = 925.04. 925.04 > 925.00
Munster
difference between rational and irrational numbers
Arundhati Reply
When traveling to Great Britain, Bethany exchanged $602 US dollars into £515 British pounds. How many pounds did she receive for each US dollar?
Jakoiya Reply
how to reduced echelon form
Solomon Reply
Jazmine trained for 3 hours on Saturday. She ran 8 miles and then biked 24 miles. Her biking speed is 4 mph faster than her running speed. What is her running speed?
Zack Reply
d=r×t the equation would be 8/r+24/r+4=3 worked out
Sheirtina
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask