<< Chapter < Page Chapter >> Page >
  • Explain the relationship between the energy of a photon in joules or electron volts and its wavelength or frequency.
  • Calculate the number of photons per second emitted by a monochromatic source of specific wavelength and power.

Ionizing radiation

A photon is a quantum of EM radiation. Its energy is given by E = hf and is related to the frequency f and wavelength λ size 12{λ} {} of the radiation by

E = hf = hc λ (energy of a photon), size 12{E = ital "hf"= { { ital "hc"} over {λ} } } {}

where E size 12{E} {} is the energy of a single photon and c size 12{c} {} is the speed of light. When working with small systems, energy in eV is often useful. Note that Planck’s constant in these units is

h = 4 . 14 × 10 –15 eV s . size 12{h =" 4" "." "14 " times " 10" rSup { size 8{"–15"} } " eV " cdot " s"} {}

Since many wavelengths are stated in nanometers (nm), it is also useful to know that

hc = 1240 eV nm . size 12{ ital "hc" =" 1240 eV " cdot " nm"} {}

These will make many calculations a little easier.

All EM radiation is composed of photons. [link] shows various divisions of the EM spectrum plotted against wavelength, frequency, and photon energy. Previously in this book, photon characteristics were alluded to in the discussion of some of the characteristics of UV, x rays, and γ size 12{γ} {} rays, the first of which start with frequencies just above violet in the visible spectrum. It was noted that these types of EM radiation have characteristics much different than visible light. We can now see that such properties arise because photon energy is larger at high frequencies.

An electromagnetic spectrum is shown. Different types of radiation are indicated using double-sided arrows based on the ranges of their wavelength, energy, and frequency; the visible spectrum is shown, which is a very narrow band. The radio wave region is further segmented into A M radio, F M radio, and Microwaves bands.
The EM spectrum, showing major categories as a function of photon energy in eV, as well as wavelength and frequency. Certain characteristics of EM radiation are directly attributable to photon energy alone.
Representative energies for submicroscopic effects (order of magnitude only)
Rotational energies of molecules 10 5 size 12{"10" rSup { size 8{ - 5} } } {} eV
Vibrational energies of molecules 0.1 eV
Energy between outer electron shells in atoms 1 eV
Binding energy of a weakly bound molecule 1 eV
Energy of red light 2 eV
Binding energy of a tightly bound molecule 10 eV
Energy to ionize atom or molecule 10 to 1000 eV

Photons act as individual quanta and interact with individual electrons, atoms, molecules, and so on. The energy a photon carries is, thus, crucial to the effects it has. [link] lists representative submicroscopic energies in eV. When we compare photon energies from the EM spectrum in [link] with energies in the table, we can see how effects vary with the type of EM radiation.

Gamma rays , a form of nuclear and cosmic EM radiation, can have the highest frequencies and, hence, the highest photon energies in the EM spectrum. For example, a γ size 12{γ} {} -ray photon with f = 10 21 Hz size 12{f"= 10" rSup { size 8{"21"} } " Hz"} {} has an energy E = hf = 6.63 × 10 –13 J = 4 . 14 MeV. size 12{E = ital "hf""= 6" "." "63 " times " 10" rSup { size 8{"–13"} } " J"=4 "." "14"`"MeV"} {} This is sufficient energy to ionize thousands of atoms and molecules, since only 10 to 1000 eV are needed per ionization. In fact, γ size 12{γ} {} rays are one type of ionizing radiation    , as are x rays and UV, because they produce ionization in materials that absorb them. Because so much ionization can be produced, a single γ size 12{γ} {} -ray photon can cause significant damage to biological tissue, killing cells or damaging their ability to properly reproduce. When cell reproduction is disrupted, the result can be cancer, one of the known effects of exposure to ionizing radiation. Since cancer cells are rapidly reproducing, they are exceptionally sensitive to the disruption produced by ionizing radiation. This means that ionizing radiation has positive uses in cancer treatment as well as risks in producing cancer.

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 9

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask