<< Chapter < Page Chapter >> Page >

Solution for (a)

The rotational kinetic energy is

KE rot = 1 2 2 . size 12{"KE" rSub { size 8{"rot"} } = { {1} over {2} } Iω rSup { size 8{2} } } {}

We must convert the angular velocity to radians per second and calculate the moment of inertia before we can find KE rot . The angular velocity ω size 12{ω} {} is

ω = 300 rev 1.00 min 2π rad 1 rev 1.00 min 60.0 s = 31.4 rad s . size 12{ω= { {"300"" rev"} over {1 "." "00 min"} } cdot { {2π" rad"} over {"1 rev"} } cdot { {1 "." "00"" min"} over {"60" "." 0" s"} } ="31" "." 4 { {"rad"} over {s} } } {}

The moment of inertia of one blade will be that of a thin rod rotated about its end, found in [link] . The total I size 12{I} {} is four times this moment of inertia, because there are four blades. Thus,

I = 4 Mℓ 2 3 = 4 × 50.0 kg 4.00 m 2 3 = 1067 kg m 2 . size 12{I=4 { {Mℓ rSup { size 8{2} } } over {3} } =4 times { { left ("50" "." 0" kg" right ) left (4 "." "00"" m" right ) rSup { size 8{2} } } over {3} } ="1067"" kg" cdot m rSup { size 8{2} } } {}

Entering ω size 12{ω} {} and I size 12{I} {} into the expression for rotational kinetic energy gives

KE rot = 0.5 ( 1067 kg m 2 ) 31.4 rad/s 2 = 5.26 × 10 5 J alignl { stack { size 12{"KE" rSub { size 8{"rot"} } =0 "." 5 left ("1067"" kg" cdot m rSup { size 8{2} } right ) left ("31" "." 4" rad/s" right ) rSup { size 8{2} } } {} #" "=5 "." "26" times "10" rSup { size 8{5} } " J" {} } } {}

Solution for (b)

Translational kinetic energy was defined in Uniform Circular Motion and Gravitation . Entering the given values of mass and velocity, we obtain

KE trans = 1 2 mv 2 = 0.5 1000 kg 20.0 m/s 2 = 2 . 00 × 10 5 J . size 12{"KE" rSub { size 8{"trans"} } = { {1} over {2} } ital "mv" rSup { size 8{2} } =0 "." 5 left ("1000"" kg" right ) left ("20" "." 0" m/s" right ) rSup { size 8{2} } =2 "." "00" times "10" rSup { size 8{5} } " J"} {}

To compare kinetic energies, we take the ratio of translational kinetic energy to rotational kinetic energy. This ratio is

2 . 00 × 10 5 J 5 . 26 × 10 5 J = 0.380 . size 12{ { {2 "." "00" times "10" rSup { size 8{5} } " J"} over {5 "." "26" times "10" rSup { size 8{5} } " J"} } =0 "." "380"} {}

Solution for (c)

At the maximum height, all rotational kinetic energy will have been converted to gravitational energy. To find this height, we equate those two energies:

KE rot = PE grav size 12{"KE" rSub { size 8{"rot"} } ="PE" rSub { size 8{"grav"} } } {}

or

1 2 2 = mgh . size 12{ { {1} over {2} } Iω rSup { size 8{2} } = ital "mgh"} {}

We now solve for h size 12{h} {} and substitute known values into the resulting equation

h = 1 2 2 mg = 5.26 × 10 5 J 1000 kg 9.80 m/s 2 = 53.7 m . size 12{h= { { { size 8{1} } wideslash { size 8{2} } Iω rSup { size 8{2} } } over { ital "mg"} } = { {5 "." "26" times "10" rSup { size 8{5} } " J"} over { left ("1000"" kg" right ) left (9 "." "80"" m/s" rSup { size 8{2} } right )} } ="53" "." 7" m"} {}

Discussion

The ratio of translational energy to rotational kinetic energy is only 0.380. This ratio tells us that most of the kinetic energy of the helicopter is in its spinning blades—something you probably would not suspect. The 53.7 m height to which the helicopter could be raised with the rotational kinetic energy is also impressive, again emphasizing the amount of rotational kinetic energy in the blades.

The given figure here shows a helicopter from the Auckland Westpac Rescue Helicopter Service over a sea. A rescue diver is shown holding the iron stand bar at the bottom of the helicopter, clutching a person. In the other image just above this, the blades of the helicopter are shown with their anti-clockwise rotation direction shown with an arrow and the length of one blade is given as four meters.
The first image shows how helicopters store large amounts of rotational kinetic energy in their blades. This energy must be put into the blades before takeoff and maintained until the end of the flight. The engines do not have enough power to simultaneously provide lift and put significant rotational energy into the blades. The second image shows a helicopter from the Auckland Westpac Rescue Helicopter Service. Over 50,000 lives have been saved since its operations beginning in 1973. Here, a water rescue operation is shown. (credit: 111 Emergency, Flickr)

Making connections

Conservation of energy includes rotational motion, because rotational kinetic energy is another form of KE size 12{"KE"} {} . Uniform Circular Motion and Gravitation has a detailed treatment of conservation of energy.

How thick is the soup? or why don’t all objects roll downhill at the same rate?

One of the quality controls in a tomato soup factory consists of rolling filled cans down a ramp. If they roll too fast, the soup is too thin. Why should cans of identical size and mass roll down an incline at different rates? And why should the thickest soup roll the slowest?

The easiest way to answer these questions is to consider energy. Suppose each can starts down the ramp from rest. Each can starting from rest means each starts with the same gravitational potential energy PE grav size 12{ ital "PE" rSub { size 8{ ital "grav"} } } {} , which is converted entirely to KE , provided each rolls without slipping. KE , however, can take the form of KE trans size 12{ ital "KE" rSub { size 8{ ital "trans"} } } {} or KE rot size 12{ ital "KE" rSub { size 8{ ital "rot"} } } {} , and total KE is the sum of the two. If a can rolls down a ramp, it puts part of its energy into rotation, leaving less for translation. Thus, the can goes slower than it would if it slid down. Furthermore, the thin soup does not rotate, whereas the thick soup does, because it sticks to the can. The thick soup thus puts more of the can’s original gravitational potential energy into rotation than the thin soup, and the can rolls more slowly, as seen in [link] .

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask