<< Chapter < Page Chapter >> Page >

Why don’t we notice Heisenberg’s uncertainty principle in everyday life? The answer is that Planck’s constant is very small. Thus the lower limit in the uncertainty of measuring the position and momentum of large objects is negligible. We can detect sunlight reflected from Jupiter and follow the planet in its orbit around the Sun. The reflected sunlight alters the momentum of Jupiter and creates an uncertainty in its momentum, but this is totally negligible compared with Jupiter’s huge momentum. The correspondence principle tells us that the predictions of quantum mechanics become indistinguishable from classical physics for large objects, which is the case here.

Heisenberg uncertainty for energy and time

There is another form of Heisenberg’s uncertainty principle     for simultaneous measurements of energy and time . In equation form,

Δ E Δ t h , size 12{ΔE Δt>= { {h} over {4π} } } {}

where Δ E size 12{ΔE} {} is the uncertainty in energy    and Δ t size 12{Δt} {} is the uncertainty in time    . This means that within a time interval Δ t size 12{Δt} {} , it is not possible to measure energy precisely—there will be an uncertainty Δ E size 12{ΔE} {} in the measurement. In order to measure energy more precisely (to make Δ E size 12{ΔE} {} smaller), we must increase Δ t size 12{Δt} {} . This time interval may be the amount of time we take to make the measurement, or it could be the amount of time a particular state exists, as in the next [link] .

Heisenberg uncertainty principle for energy and time for an atom

An atom in an excited state temporarily stores energy. If the lifetime of this excited state is measured to be 1.0×10 10 s size 12{"10" rSup { size 8{ - "10"} } `s} {} , what is the minimum uncertainty in the energy of the state in eV?

Strategy

The minimum uncertainty in energy Δ E size 12{ΔE} {} is found by using the equals sign in Δ E Δ t h /4 π size 12{ΔE Δt>= h"/4"π} {} and corresponds to a reasonable choice for the uncertainty in time. The largest the uncertainty in time can be is the full lifetime of the excited state, or Δ t = 1.0×10 10 s size 12{Δt="10" rSup { size 8{ - "10"} } `s} {} .

Solution

Solving the uncertainty principle for Δ E size 12{ΔE} {} and substituting known values gives

Δ E = h 4πΔt = 6 . 63 × 10 –34 J s ( 1.0×10 –10 s ) = 5 . 3 × 10 –25 J. size 12{ΔE= { {h} over {4πΔt} } = { {6 "." "63 " times " 10" rSup { size 8{"–34"} } " J " cdot " s"} over {4π \( "10" rSup { size 8{"–10"} } " s" \) } } =" 5" "." "3 " times " 10" rSup { size 8{"–25"} } " J" "." } {}

Now converting to eV yields

Δ E = (5.3 × 10 –25 J) ( 1 eV 1 . 6 × 10 –19 J ) = 3 . 3 × 10 –6 eV . size 12{ΔE =" 5" "." "3 " times " 10" rSup { size 8{"–25"} } " J " cdot { {"1 eV"} over {1 "." "6 " times " 10" rSup { size 8{"–19"} } " J"} } =" 3" "." "3 " times " 10" rSup { size 8{"–6"} } " eV" "." } {}

Discussion

The lifetime of 10 10 s size 12{"10" rSup { size 8{ - "10"} } `s} {} is typical of excited states in atoms—on human time scales, they quickly emit their stored energy. An uncertainty in energy of only a few millionths of an eV results. This uncertainty is small compared with typical excitation energies in atoms, which are on the order of 1 eV. So here the uncertainty principle limits the accuracy with which we can measure the lifetime and energy of such states, but not very significantly.

Got questions? Get instant answers now!

The uncertainty principle for energy and time can be of great significance if the lifetime of a system is very short. Then Δ t size 12{Δt} {} is very small, and Δ E size 12{ΔE} {} is consequently very large. Some nuclei and exotic particles have extremely short lifetimes (as small as 10 25 s size 12{"10" rSup { size 8{ - "25"} } `s} {} ), causing uncertainties in energy as great as many GeV ( 10 9 eV size 12{"10" rSup { size 8{9} } `"eV"} {} ). Stored energy appears as increased rest mass, and so this means that there is significant uncertainty in the rest mass of short-lived particles. When measured repeatedly, a spread of masses or decay energies are obtained. The spread is Δ E size 12{ΔE} {} . You might ask whether this uncertainty in energy could be avoided by not measuring the lifetime. The answer is no. Nature knows the lifetime, and so its brevity affects the energy of the particle. This is so well established experimentally that the uncertainty in decay energy is used to calculate the lifetime of short-lived states. Some nuclei and particles are so short-lived that it is difficult to measure their lifetime. But if their decay energy can be measured, its spread is Δ E size 12{ΔE} {} , and this is used in the uncertainty principle ( Δ E Δ t h /4 π ) to calculate the lifetime Δ t size 12{Δt} {} .

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask