<< Chapter < Page Chapter >> Page >

Hadrons and leptons

Particles can also be revealingly grouped according to what forces they feel between them. All particles (even those that are massless) are affected by gravity, since gravity affects the space and time in which particles exist. All charged particles are affected by the electromagnetic force, as are neutral particles that have an internal distribution of charge (such as the neutron with its magnetic moment). Special names are given to particles that feel the strong and weak nuclear forces. Hadrons are particles that feel the strong nuclear force, whereas leptons    are particles that do not. The proton, neutron, and the pions are examples of hadrons. The electron, positron, muons, and neutrinos are examples of leptons, the name meaning low mass. Leptons feel the weak nuclear force. In fact, all particles feel the weak nuclear force. This means that hadrons are distinguished by being able to feel both the strong and weak nuclear forces.

[link] lists the characteristics of some of the most important subatomic particles, including the directly observed carrier particles for the electromagnetic and weak nuclear forces, all leptons, and some hadrons. Several hints related to an underlying substructure emerge from an examination of these particle characteristics. Note that the carrier particles are called gauge bosons . First mentioned in Patterns in Spectra Reveal More Quantization , a boson    is a particle with zero or an integer value of intrinsic spin (such as s = 0, 1, 2, ... size 12{s=0,`1,`2,` "." "." "." } {} ), whereas a fermion    is a particle with a half-integer value of intrinsic spin ( s = 1 / 2, 3 / 2, . . . size 12{s=1/2,`3/2,` "." "." "." } {} ). Fermions obey the Pauli exclusion principle whereas bosons do not. All the known and conjectured carrier particles are bosons.

The upper image shows an electron and positron colliding head-on. The lower image shows a starburst image from which two photons are emerging in opposite directions.
When a particle encounters its antiparticle, they annihilate, often producing pure energy in the form of photons. In this case, an electron and a positron convert all their mass into two identical energy rays, which move away in opposite directions to keep total momentum zero as it was before. Similar annihilations occur for other combinations of a particle with its antiparticle, sometimes producing more particles while obeying all conservation laws.
Selected particle characteristics The lower of the size 12{ -+ {}} {} or ± size 12{ +- {}} {} symbols are the values for antiparticles.
Category Particle name Symbol Antiparticle Rest mass ( MeV / c 2 ) B L e L μ L τ size 12{L rSub { size 8{τ} } } {} S size 12{S} {} Lifetime Lifetimes are traditionally given as t 1 / 2 / 0 . 693 (which is 1 / λ size 12{ {1} slash {λ} } {} , the inverse of the decay constant). (s)
Gauge Photon γ size 12{γ} {} Self 0 0 0 0 0 0 Stable
Bosons W size 12{W} {} W + size 12{W rSup { size 8{+{}} } } {} W size 12{W rSup { size 8{ - {}} } } {} 80 . 39 × 10 3 size 12{"80" "." "22" times "10" rSup { size 8{3} } } {} 0 0 0 0 0 1.6 × 10 25 size 12{3 times "10" rSup { size 8{ - "25"} } } {}
Z size 12{Z} {} Z 0 size 12{Z rSup { size 8{0} } } {} Self 91 . 19 × 10 3 size 12{"91" "." "19" times "10" rSup { size 8{3} } } {} 0 0 0 0 0 1.32 × 10 25 size 12{3 times "10" rSup { size 8{ - "25"} } } {}
Leptons Electron e size 12{e rSup { size 8{ - {}} } } {} e + size 12{e rSup { size 8{ - {}} } } {} 0.511 0 ± 1 size 12{ +- 1} {} 0 0 0 Stable
Neutrino (e) ν e size 12{e rSup { size 8{ - {}} } } {} v ¯ e size 12{ { bar {v}} rSub { size 8{e} } } {} 0 7 . 0 eV size 12{0` left (<7 "." 0`"eV" right )} {} Neutrino masses may be zero. Experimental upper limits are given in parentheses. 0 ± 1 size 12{ +- 1} {} 0 0 0 Stable
Muon μ size 12{μ rSup { size 8{ - {}} } } {} μ + size 12{μ rSup { size 8{+{}} } } {} 105.7 0 0 ± 1 size 12{ +- 1} {} 0 0 2 . 20 × 10 6 size 12{2 "." "20" times "10" rSup { size 8{ - 6} } } {}
Neutrino ( μ size 12{μ} {} ) v μ size 12{v rSub { size 8{μ} } } {} v - μ size 12{v rSub { size 8{μ} } } {} 0 ( < 0.27 ) 0 0 ± 1 size 12{ +- 1} {} 0 0 Stable
Tau τ size 12{τ rSup { size 8{ - {}} } } {} τ + size 12{τ rSup { size 8{+{}} } } {} 1777 0 0 0 ± 1 size 12{ +- 1} {} 0 2 . 91 × 10 13 size 12{2 "." "29" times "10" rSup { size 8{ - "13"} } } {}
Neutrino ( τ size 12{τ} {} ) v τ size 12{v rSub { size 8{τ} } } {} v - τ size 12{ { bar {v}} rSub { size 8{τ} } } {} 0 ( < 31 ) 0 0 0 ± 1 size 12{ +- 1} {} 0 Stable
Hadrons (selected)
  Mesons Pion π + size 12{π rSup { size 8{+{}} } } {} π size 12{π rSup { size 8{ - {}} } } {} 139.6 0 0 0 0 0 2.60 × 10 −8
π 0 size 12{π rSup { size 8{0} } } {} Self 135.0 0 0 0 0 0 8.4 × 10 −17
Kaon K + size 12{K rSup { size 8{+{}} } } {} K size 12{K rSup { size 8{ - {}} } } {} 493.7 0 0 0 0 ± 1 size 12{ +- 1} {} 1.24 × 10 −8
K 0 size 12{K rSup { size 8{0} } } {} K - 0 size 12{ { bar {K}} rSup { size 8{0} } } {} 497.6 0 0 0 0 ± 1 size 12{ +- 1} {} 0.90 × 10 −10
Eta η 0 size 12{η rSup { size 8{0} } } {} Self 547.9 0 0 0 0 0 2.53 × 10 −19
(many other mesons known)
  Baryons Proton p size 12{p} {} p - size 12{ { bar {p}}} {} 938.3 ± 1 0 0 0 0 Stable Experimental lower limit is >5 × 10 32 size 12{>5 times "10" rSup { size 8{"32"} } } {} for proposed mode of decay.
Neutron n size 12{n} {} n - size 12{ { bar {n}}} {} 939.6 ± 1 0 0 0 0 882
Lambda Λ 0 size 12{Λ rSup { size 8{0} } } {} Λ - 0 size 12{ { bar {Λ}} rSup { size 8{0} } } {} 1115.7 ± 1 0 0 0 1 size 12{ -+ 1} {} 2.63 × 10 −10
Sigma Σ + size 12{Σ rSup { size 8{+{}} } } {} Σ - size 12{ { bar {Σ}} rSup { size 8{ - {}} } } {} 1189.4 ± 1 0 0 0 1 size 12{ -+ 1} {} 0.80 × 10 −10
Σ 0 size 12{Σ rSup { size 8{0} } } {} Σ - 0 size 12{ { bar {Σ}} rSup { size 8{0} } } {} 1192.6 ± 1 0 0 0 1 size 12{ -+ 1} {} 7.4 × 10 −20
Σ size 12{Σ rSup { size 8{ - {}} } } {} Σ - + size 12{ { bar {Σ}} rSup { size 8{+{}} } } {} 1197.4 ± 1 0 0 0 1 size 12{ -+ 1} {} 1.48 × 10 −10
Xi Ξ 0 size 12{Ξ rSup { size 8{0} } } {} Ξ - 0 size 12{ { bar {Ξ}} rSup { size 8{0} } } {} 1314.9 ± 1 0 0 0 2 size 12{ -+ 2} {} 2.90 × 10 −10
Ξ size 12{Ξ rSup { size 8{ - {}} } } {} Ξ + size 12{Ξ rSup { size 8{+{}} } } {} 1321.7 ± 1 0 0 0 2 size 12{ -+ 2} {} 1.64 × 10 −10
Omega Ω size 12{ %OMEGA rSup { size 8{ - {}} } } {} Ω + size 12{ %OMEGA rSup { size 8{+{}} } } {} 1672.5 ± 1 0 0 0 3 size 12{ -+ 3} {} 0.82 × 10 −10
(many other baryons known)

Questions & Answers

how do you get the 2/50
Abba Reply
number of sport play by 50 student construct discrete data
Aminu Reply
width of the frangebany leaves on how to write a introduction
Theresa Reply
Solve the mean of variance
Veronica Reply
Step 1: Find the mean. To find the mean, add up all the scores, then divide them by the number of scores. ... Step 2: Find each score's deviation from the mean. ... Step 3: Square each deviation from the mean. ... Step 4: Find the sum of squares. ... Step 5: Divide the sum of squares by n – 1 or N.
kenneth
what is error
Yakuba Reply
Is mistake done to something
Vutshila
Hy
anas
hy
What is the life teble
anas
hy
Jibrin
statistics is the analyzing of data
Tajudeen Reply
what is statics?
Zelalem Reply
how do you calculate mean
Gloria Reply
diveving the sum if all values
Shaynaynay
let A1,A2 and A3 events be independent,show that (A1)^c, (A2)^c and (A3)^c are independent?
Fisaye Reply
what is statistics
Akhisani Reply
data collected all over the world
Shaynaynay
construct a less than and more than table
Imad Reply
The sample of 16 students is taken. The average age in the sample was 22 years with astandard deviation of 6 years. Construct a 95% confidence interval for the age of the population.
Aschalew Reply
Bhartdarshan' is an internet-based travel agency wherein customer can see videos of the cities they plant to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400 a. what is the probability of getting more than 12,000 hits? b. what is the probability of getting fewer than 9,000 hits?
Akshay Reply
Bhartdarshan'is an internet-based travel agency wherein customer can see videos of the cities they plan to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400. a. What is the probability of getting more than 12,000 hits
Akshay
1
Bright
Sorry i want to learn more about this question
Bright
Someone help
Bright
a= 0.20233 b=0.3384
Sufiyan
a
Shaynaynay
How do I interpret level of significance?
Mohd Reply
It depends on your business problem or in Machine Learning you could use ROC- AUC cruve to decide the threshold value
Shivam
how skewness and kurtosis are used in statistics
Owen Reply
yes what is it
Taneeya
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask