<< Chapter < Page Chapter >> Page >

Graphs of motion when a size 12{a} {} Is constant but a 0 size 12{a<>0} {}

The graphs in [link] below represent the motion of the jet-powered car as it accelerates toward its top speed, but only during the time when its acceleration is constant. Time starts at zero for this motion (as if measured with a stopwatch), and the displacement and velocity are initially 200 m and 15 m/s, respectively.

Three line graphs. First is a line graph of displacement over time. Line has a positive slope that increases with time. Second line graph is of velocity over time. Line is straight with a positive slope. Third line graph is of acceleration over time. Line is straight and horizontal, indicating constant acceleration.
Graphs of motion of a jet-powered car during the time span when its acceleration is constant. (a) The slope of an x size 12{x} {} vs. t size 12{t} {} graph is velocity. This is shown at two points, and the instantaneous velocities obtained are plotted in the next graph. Instantaneous velocity at any point is the slope of the tangent at that point. (b) The slope of the v size 12{v} {} vs. t size 12{t} {} graph is constant for this part of the motion, indicating constant acceleration. (c) Acceleration has the constant value of 5 . 0 m/s 2 size 12{5 "." "0 m/s" rSup { size 8{2} } } {} over the time interval plotted.
A U.S. Air Force jet car speeds down a track. (credit: Matt Trostle, Flickr)

The graph of displacement versus time in [link] (a) is a curve rather than a straight line. The slope of the curve becomes steeper as time progresses, showing that the velocity is increasing over time. The slope at any point on a displacement-versus-time graph is the instantaneous velocity at that point. It is found by drawing a straight line tangent to the curve at the point of interest and taking the slope of this straight line. Tangent lines are shown for two points in [link] (a). If this is done at every point on the curve and the values are plotted against time, then the graph of velocity versus time shown in [link] (b) is obtained. Furthermore, the slope of the graph of velocity versus time is acceleration, which is shown in [link] (c).

Determining instantaneous velocity from the slope at a point: jet car

Calculate the velocity of the jet car at a time of 25 s by finding the slope of the x size 12{x} {} vs. t size 12{t} {} graph in the graph below.

A graph of displacement versus time for a jet car. The x axis for time runs from zero to thirty five seconds. The y axis for displacement runs from zero to three thousand meters. The curve depicting displacement is concave up. The slope of the curve increases over time. Slope equals velocity v. There are two points on the curve, labeled, P and Q. P is located at time equals ten seconds. Q is located and time equals twenty-five seconds. A line tangent to P at ten seconds is drawn and has a slope delta x sub P over delta t sub p. A line tangent to Q at twenty five seconds is drawn and has a slope equal to delta x sub q over delta t sub q. Select coordinates are given in a table and consist of the following: time zero seconds displacement two hundred meters; time five seconds displacement three hundred thirty eight meters; time ten seconds displacement six hundred meters; time fifteen seconds displacement nine hundred eighty eight meters. Time twenty seconds displacement one thousand five hundred meters; time twenty five seconds displacement two thousand one hundred thirty eight meters; time thirty seconds displacement two thousand nine hundred meters.
The slope of an x size 12{x} {} vs. t size 12{t} {} graph is velocity. This is shown at two points. Instantaneous velocity at any point is the slope of the tangent at that point.

Strategy

The slope of a curve at a point is equal to the slope of a straight line tangent to the curve at that point. This principle is illustrated in [link] , where Q is the point at t = 25 s size 12{t="25"`s} {} .

Solution

1. Find the tangent line to the curve at t = 25 s size 12{t="25"`s} {} .

2. Determine the endpoints of the tangent. These correspond to a position of 1300 m at time 19 s and a position of 3120 m at time 32 s.

3. Plug these endpoints into the equation to solve for the slope, v size 12{v} {} .

slope = v Q = Δ x Q Δ t Q = 3120 m 1300 m 32 s 19 s size 12{"slope"=v rSub { size 8{Q} } = { {Δx rSub { size 8{Q} } } over {Δt rSub { size 8{Q} } } } = { { left ("3120"`m - "1300"`m right )} over { left ("32"`s - "19"`s right )} } } {}

Thus,

v Q = 1820 m 13 s = 140 m/s.

Discussion

This is the value given in this figure’s table for v size 12{v} {} at t = 25 s . The value of 140 m/s for v Q is plotted in [link] . The entire graph of v vs. t can be obtained in this fashion.

Got questions? Get instant answers now!

Carrying this one step further, we note that the slope of a velocity versus time graph is acceleration. Slope is rise divided by run; on a v size 12{v} {} vs. t graph, rise = change in velocity Δ v size 12{Dv} {} and run = change in time Δ t size 12{Dt} {} .

The slope of v Vs. t

The slope of a graph of velocity v size 12{v} {} vs. time t size 12{t} {} is acceleration a size 12{a} {} .

slope = Δ v Δ t = a

Since the velocity versus time graph in [link] (b) is a straight line, its slope is the same everywhere, implying that acceleration is constant. Acceleration versus time is graphed in [link] (c).

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask