<< Chapter < Page Chapter >> Page >

If such a galvanometer has a 2 5- Ω size 12{2"5-" %OMEGA } {} resistance, then a voltage of only V = IR = 50 μA 25 Ω = 1 . 25 mV size 12{V= ital "IR"= left ("50" μA right ) left ("25" %OMEGA right )=1 "." "25"" mV"} {} produces a full-scale reading. By connecting resistors to this galvanometer in different ways, you can use it as either a voltmeter or ammeter that can measure a broad range of voltages or currents.

Galvanometer as voltmeter

[link] shows how a galvanometer can be used as a voltmeter by connecting it in series with a large resistance, R . The value of the resistance R size 12{R} {} is determined by the maximum voltage to be measured. Suppose you want 10 V to produce a full-scale deflection of a voltmeter containing a 2 5-Ω size 12{2"5-" %OMEGA } {} galvanometer with a 50-μA sensitivity. Then 10 V applied to the meter must produce a current of 50 μA size 12{"50" μA} {} . The total resistance must be

R tot = R + r = V I = 10 V 50 μA = 200 k Ω, or size 12{R rSub { size 8{"tot"} } =R+r= { {V} over {I} } = { {"10"" V"} over {"50" μA} } ="200"" k" %OMEGA } {}
R = R tot r = 200 kΩ 25 Ω 200 k Ω . size 12{R=R rSub { size 8{"tot"} } -r="200"k %OMEGA -"25" %OMEGA »"200"" k" %OMEGA } {}

( R size 12{R} {} is so large that the galvanometer resistance, r , is nearly negligible.) Note that 5 V applied to this voltmeter produces a half-scale deflection by producing a 2 5-μA size 12{2"5-"μA} {} current through the meter, and so the voltmeter’s reading is proportional to voltage as desired.

This voltmeter would not be useful for voltages less than about half a volt, because the meter deflection would be small and difficult to read accurately. For other voltage ranges, other resistances are placed in series with the galvanometer. Many meters have a choice of scales. That choice involves switching an appropriate resistance into series with the galvanometer.

The drawing shows a voltmeter, which is a circuit with a large resistance in series with a galvanometer, along with its internal resistance.
A large resistance R placed in series with a galvanometer G produces a voltmeter, the full-scale deflection of which depends on the choice of R size 12{R} {} . The larger the voltage to be measured, the larger R size 12{R} {} must be. (Note that r represents the internal resistance of the galvanometer.)

Galvanometer as ammeter

The same galvanometer can also be made into an ammeter by placing it in parallel with a small resistance R size 12{R} {} , often called the shunt resistance    , as shown in [link] . Since the shunt resistance is small, most of the current passes through it, allowing an ammeter to measure currents much greater than those producing a full-scale deflection of the galvanometer.

Suppose, for example, an ammeter is needed that gives a full-scale deflection for 1.0 A, and contains the same 2 5- Ω size 12{2"5-" %OMEGA } {} galvanometer with its 50-μA size 12{"50"-μA} {} sensitivity. Since R size 12{R} {} and r size 12{r} {} are in parallel, the voltage across them is the same.

These IR size 12{ ital "IR"} {} drops are IR = I G r size 12{ ital "IR"=I rSub { size 8{G} } r} {} so that IR = I G I = R r size 12{ ital "IR"= { {I rSub { size 8{G} } } over {I} } = { {R} over {r} } } {} . Solving for R size 12{R} {} , and noting that I G size 12{I rSub { size 8{G} } } {} is 50 μA size 12{"50" μA} {} and I size 12{I} {} is 0.999950 A, we have

R = r I G I = ( 25 Ω ) 50 μA 0 . 999950 A = 1 . 25 × 10 3 Ω . size 12{R=r { {I rSub { size 8{G} } } over {I} } = \( "25" %OMEGA \) { {"50" mA} over {0 "." "999950 A"} } =1 "." "25"´"10" rSup { size 8{-3} } %OMEGA } {}
A resistance R is placed in parallel with a galvanometer G having an internal resistance r to produce an ammeter.
A small shunt resistance R size 12{R} {} placed in parallel with a galvanometer G produces an ammeter, the full-scale deflection of which depends on the choice of R size 12{R} {} . The larger the current to be measured, the smaller R size 12{R} {} must be. Most of the current ( I ) flowing through the meter is shunted through R size 12{R} {} to protect the galvanometer. (Note that r represents the internal resistance of the galvanometer.) Ammeters may also have multiple scales for greater flexibility in application. The various scales are achieved by switching various shunt resistances in parallel with the galvanometer—the greater the maximum current to be measured, the smaller the shunt resistance must be.

Questions & Answers

how to study physic and understand
Ewa Reply
what is conservative force with examples
Moses
what is work
Fredrick Reply
the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement
AI-Robot
why is it from light to gravity
Esther Reply
difference between model and theory
Esther
Is the ship moving at a constant velocity?
Kamogelo Reply
The full note of modern physics
aluet Reply
introduction to applications of nuclear physics
aluet Reply
the explanation is not in full details
Moses Reply
I need more explanation or all about kinematics
Moses
yes
zephaniah
I need more explanation or all about nuclear physics
aluet
Show that the equal masses particles emarge from collision at right angle by making explicit used of fact that momentum is a vector quantity
Muhammad Reply
yh
Isaac
A wave is described by the function D(x,t)=(1.6cm) sin[(1.2cm^-1(x+6.8cm/st] what are:a.Amplitude b. wavelength c. wave number d. frequency e. period f. velocity of speed.
Majok Reply
what is frontier of physics
Somto Reply
A body is projected upward at an angle 45° 18minutes with the horizontal with an initial speed of 40km per second. In hoe many seconds will the body reach the ground then how far from the point of projection will it strike. At what angle will the horizontal will strike
Gufraan Reply
Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen? Such differences in arrival times are used as an analytical tool in gas chromatography.
Ezekiel Reply
please explain
Samuel
what's the definition of physics
Mobolaji Reply
what is physics
Nangun Reply
the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
AI-Robot
what is isotopes
Nangun Reply
nuclei having the same Z and different N s
AI-Robot
Practice Key Terms 8

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask