<< Chapter < Page Chapter >> Page >
F B = w fl , size 12{F rSub { size 8{B} } =w rSub { size 8{"fl"} } } {}

where F B size 12{F rSub { size 8{B} } } {} is the buoyant force and w fl size 12{w rSub { size 8{"fl"} } } {} is the weight of the fluid displaced by the object. Archimedes’ principle is valid in general, for any object in any fluid, whether partially or totally submerged.

Archimedes’ principle

According to this principle the buoyant force on an object equals the weight of the fluid it displaces. In equation form, Archimedes’ principle is

F B = w fl , size 12{F rSub { size 8{B} } =w rSub { size 8{"fl"} } } {}

where F B size 12{F rSub { size 8{B} } } {} is the buoyant force and w fl size 12{w rSub { size 8{"fl"} } } {} is the weight of the fluid displaced by the object.

Humm … High-tech body swimsuits were introduced in 2008 in preparation for the Beijing Olympics. One concern (and international rule) was that these suits should not provide any buoyancy advantage. How do you think that this rule could be verified?

Making connections: take-home investigation

The density of aluminum foil is 2.7 times the density of water. Take a piece of foil, roll it up into a ball and drop it into water. Does it sink? Why or why not? Can you make it sink?

Floating and sinking

Drop a lump of clay in water. It will sink. Then mold the lump of clay into the shape of a boat, and it will float. Because of its shape, the boat displaces more water than the lump and experiences a greater buoyant force. The same is true of steel ships.

Calculating buoyant force: dependency on shape

(a) Calculate the buoyant force on 10,000 metric tons ( 1 . 00 × 10 7 kg ) size 12{ \( 1 "." "00" times "10" rSup { size 8{7} } `"kg" \) } {} of solid steel completely submerged in water, and compare this with the steel’s weight. (b) What is the maximum buoyant force that water could exert on this same steel if it were shaped into a boat that could displace 1 . 00 × 10 5 m 3 size 12{1 "." "00" times "10" rSup { size 8{5} } `m rSup { size 8{3} } } {} of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and steel given in [link] . We note that, since the steel is completely submerged, its volume and the water’s volume are the same. Once we know the volume of water, we can find its mass and weight.

Solution for (a)

First, we use the definition of density ρ = m V size 12{ρ= { {m} over {V} } } {} to find the steel’s volume, and then we substitute values for mass and density. This gives

V st = m st ρ st = 1 . 00 × 10 7 kg 7 . 8 × 10 3 kg/m 3 = 1 . 28 × 10 3 m 3 . size 12{v rSub { size 8{"st"} } = { {m rSub { size 8{"st"} } } over {ρ rSub { size 8{"st"} } } } = { {1 "." "00" times "10" rSup { size 8{7} } `"kg"} over {7 "." 8 times "10" rSup { size 8{3} } `"kg/m" rSup { size 8{3} } } } =1 "." "28" times "10" rSup { size 8{3} } `m rSup { size 8{3} } } {}

Because the steel is completely submerged, this is also the volume of water displaced, V w size 12{V rSub { size 8{w} } } {} . We can now find the mass of water displaced from the relationship between its volume and density, both of which are known. This gives

m w = ρ w V w = ( 1.000 × 10 3 kg/m 3 ) ( 1.28 × 10 3 m 3 ) = 1.28 × 10 6 kg. alignc { stack { size 12{m rSub { size 8{w} } =ρ rSub { size 8{w} } V rSub { size 8{w} } = \( 1 "." "000" times "10" rSup { size 8{3} } `"kg/m" rSup { size 8{3} } \) \( 1 "." "28" times "10" rSup { size 8{3} } `m rSup { size 8{3} } \) } {} #=1 "." "28" times "10" rSup { size 8{6} } `"kg" "." {} } } {}

By Archimedes’ principle, the weight of water displaced is m w g size 12{m rSub { size 8{w} } g} {} , so the buoyant force is

F B = w w = m w g = 1.28 × 10 6 kg 9.80 m/s 2 = 1.3 × 10 7 N. alignc { stack { size 12{F rSub { size 8{B} } =w rSub { size 8{w} } =m rSub { size 8{w} } g= left (1 "." "28" times "10" rSup { size 8{6} } `"kg" right ) left (9 "." "80"`"m/s" rSup { size 8{2} } right )} {} #=1 "." 3 times "10" rSup { size 8{7} } `N "." {} } } {}

The steel’s weight is m w g = 9 . 80 × 10 7 N size 12{m rSub { size 8{w} } g=9 "." "80" times "10" rSup { size 8{7} } `N} {} , which is much greater than the buoyant force, so the steel will remain submerged. Note that the buoyant force is rounded to two digits because the density of steel is given to only two digits.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume of water.

Solution for (b)

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is,

m w = ρ w V w = 1.000 × 10 3 kg/m 3 1.00 × 10 5 m 3 = 1.00 × 10 8 kg. alignc { stack { size 12{m rSub { size 8{w} } =ρ rSub { size 8{w} } V rSub { size 8{w} } = left (1 "." "000" times "10" rSup { size 8{3} } `"kg/m" rSup { size 8{3} } right ) left (1 "." "00" times "10" rSup { size 8{5} } `m rSup { size 8{3} } right )} {} #=1 "." "00" times "10" rSup { size 8{8} } `"kg" "." {} } } {}

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask