<< Chapter < Page Chapter >> Page >

All three curves on the phase diagram meet at a single point, the triple point    , where all three phases exist in equilibrium. For water, the triple point occurs at 273.16 K ( 0 . 01 º C ) size 12{ \( 0 "." "01"°C \) } {} , and is a more accurate calibration temperature than the melting point of water at 1.00 atm, or 273.15 K ( 0 . 0 º C ) size 12{ \( 0 "." 0°C \) } {} . See [link] for the triple point values of other substances.

Equilibrium

Liquid and gas phases are in equilibrium at the boiling temperature. (See [link] .) If a substance is in a closed container at the boiling point, then the liquid is boiling and the gas is condensing at the same rate without net change in their relative amount. Molecules in the liquid escape as a gas at the same rate at which gas molecules stick to the liquid, or form droplets and become part of the liquid phase. The combination of temperature and pressure has to be “just right”; if the temperature and pressure are increased, equilibrium is maintained by the same increase of boiling and condensation rates.

Figure a shows a closed system containing a liquid and a gas. A thermometer with one end in the liquid indicates an unspecified temperature, and a pressure gauge indicates an unspecified pressure. A vector from the liquid to the gas represents the rate of vaporization, and a vector from the gas into the liquid represents the rate of condensation. The two vectors are equal in length, illustrating that the two rates are equal. Figure b is essentially the same as figure a, except that the pressure, temperature, and rates of condensation and vaporization are all greater than in figure a. The rates of vaporization and condensation in figure b are equal to each other, even though they are greater than the rates in figure a.
Equilibrium between liquid and gas at two different boiling points inside a closed container. (a) The rates of boiling and condensation are equal at this combination of temperature and pressure, so the liquid and gas phases are in equilibrium. (b) At a higher temperature, the boiling rate is faster and the rates at which molecules leave the liquid and enter the gas are also faster. Because there are more molecules in the gas, the gas pressure is higher and the rate at which gas molecules condense and enter the liquid is faster. As a result the gas and liquid are in equilibrium at this higher temperature.
Triple point temperatures and pressures
Substance Temperature Pressure
K size 12{K} {} º C size 12{°C} {} Pa size 12{"Pa"} {} atm size 12{"atm"} {}
Water 273.16 0.01 6 . 10 × 10 2 size 12{6 "." "10"×"10" rSup { size 8{2} } } {} 0.00600
Carbon dioxide 216.55 −56.60 5 . 16 × 10 5 size 12{5 "." "16" times "10" rSup { size 8{5} } } {} 5.11
Sulfur dioxide 197.68 −75.47 1 . 67 × 10 3 size 12{1 "." "67"×"10" rSup { size 8{3} } } {} 0.0167
Ammonia 195.40 −77.75 6 . 06 × 10 3 size 12{6 "." "06"×"10" rSup { size 8{3} } } {} 0.0600
Nitrogen 63.18 −210.0 1 . 25 × 10 4 size 12{1 "." "25"×"10" rSup { size 8{4} } } {} 0.124
Oxygen 54.36 −218.8 1 . 52 × 10 2 size 12{1 "." "52" times "10" rSup { size 8{2} } } {} 0.00151
Hydrogen 13.84 −259.3 7 . 04 × 10 3 size 12{7 "." "04"×"10" rSup { size 8{3} } } {} 0.0697

One example of equilibrium between liquid and gas is that of water and steam at 100 º C size 12{"100"°C} {} and 1.00 atm. This temperature is the boiling point at that pressure, so they should exist in equilibrium. Why does an open pot of water at 100 º C size 12{"100"°C} {} boil completely away? The gas surrounding an open pot is not pure water: it is mixed with air. If pure water and steam are in a closed container at 100 º C size 12{"100"°C} {} and 1.00 atm, they would coexist—but with air over the pot, there are fewer water molecules to condense, and water boils. What about water at 20 . 0 º C size 12{"20" "." 0°C} {} and 1.00 atm? This temperature and pressure correspond to the liquid region, yet an open glass of water at this temperature will completely evaporate. Again, the gas around it is air and not pure water vapor, so that the reduced evaporation rate is greater than the condensation rate of water from dry air. If the glass is sealed, then the liquid phase remains. We call the gas phase a vapor    when it exists, as it does for water at 20 . 0 º C size 12{"20" "." 0°C} {} , at a temperature below the boiling temperature.

Explain why a cup of water (or soda) with ice cubes stays at 0 º C size 12{0°C} {} , even on a hot summer day.

The ice and liquid water are in thermal equilibrium, so that the temperature stays at the freezing temperature as long as ice remains in the liquid. (Once all of the ice melts, the water temperature will start to rise.)

Got questions? Get instant answers now!

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask