<< Chapter < Page Chapter >> Page >
p = h λ , size 12{p = { {h} over {λ} } } {}

where h size 12{h} {} is Planck’s constant and λ size 12{λ} {} is the photon wavelength. (Note that relativistic momentum given as p = γ mu size 12{p=γ ital "mu"} {} is valid only for particles having mass.)

Collision of an electron with a photon of energy E equal to h f is shown. The electron is represented as a spherical ball and the photon as an ellipse enclosing a wave. After collision the energy of the photon becomes E prime equal to h f prime and the final energy of an electron K E sub e is equal to E minus E prime. The direction of electron and photon before and after collision is represented by arrows.
The Compton effect is the name given to the scattering of a photon by an electron. Energy and momentum are conserved, resulting in a reduction of both for the scattered photon. Studying this effect, Compton verified that photons have momentum.

We can see that photon momentum is small, since p = h / λ size 12{p = h/λ} {} and h size 12{h} {} is very small. It is for this reason that we do not ordinarily observe photon momentum. Our mirrors do not recoil when light reflects from them (except perhaps in cartoons). Compton saw the effects of photon momentum because he was observing x rays, which have a small wavelength and a relatively large momentum, interacting with the lightest of particles, the electron.

Electron and photon momentum compared

(a) Calculate the momentum of a visible photon that has a wavelength of 500 nm. (b) Find the velocity of an electron having the same momentum. (c) What is the energy of the electron, and how does it compare with the energy of the photon?

Strategy

Finding the photon momentum is a straightforward application of its definition: p = h λ size 12{p = { {h} over {λ} } } {} . If we find the photon momentum is small, then we can assume that an electron with the same momentum will be nonrelativistic, making it easy to find its velocity and kinetic energy from the classical formulas.

Solution for (a)

Photon momentum is given by the equation:

p = h λ . size 12{p = { {h} over {λ} } } {}

Entering the given photon wavelength yields

p = 6 . 63 × 10 –34 J s 500 × 10 –9 m = 1 . 33 × 10 –27 kg m/s . size 12{p = { {6 "." "63 " times " 10" rSup { size 8{"–34"} } " J " cdot " s"} over {"500 " times " 10" rSup { size 8{"–9"} } " m"} } =" 1" "." "33 " times " 10" rSup { size 8{"–27"} } " kg " cdot " m/s"} {}

Solution for (b)

Since this momentum is indeed small, we will use the classical expression p = mv size 12{p= ital "mv"} {} to find the velocity of an electron with this momentum. Solving for v size 12{v} {} and using the known value for the mass of an electron gives

v = p m = 1 . 33 × 10 –27 kg m/s 9 . 11 × 10 –31 kg = 1460 m/s 1460 m/s . size 12{v = { {p} over {m} } = { {1 "." "33 " times " 10" rSup { size 8{"–27"} } " kg " cdot " m/s"} over {9 "." "11 " times " 10" rSup { size 8{"–31"} } " kg"} } =" 1460 m/s"} {}

Solution for (c)

The electron has kinetic energy, which is classically given by

KE e = 1 2 mv 2 . size 12{"KE" rSub { size 8{e} } = { {1} over {2} } ital "mv" rSup { size 8{2} } } {}

Thus,

KE e = 1 2 ( 9 . 11 × 10 –3 kg ) ( 1455 m/s ) 2 = 9.64 × 10 –25 J .

Converting this to eV by multiplying by ( 1 eV ) / ( 1 . 602 × 10 –19 J ) size 12{ \( "1 eV" \) / \( 1 "." "602" times "10" rSup { size 8{"–19"} } `J \) } {} yields

KE e = 6.02 × 10 –6 eV . size 12{"KE" rSub { size 8{e} } =" 6" "." "06 " times " 10" rSup { size 8{"–6"} } " eV"} {}

The photon energy E is

E = hc λ = 1240 eV nm 500 nm = 2 . 48 eV , size 12{E = { { ital "hc"} over {λ} } = { {" 1240 eV " cdot " nm"} over {"500"" nm"} } = 2 "." "48"" eV"} {}

which is about five orders of magnitude greater.

Discussion

Photon momentum is indeed small. Even if we have huge numbers of them, the total momentum they carry is small. An electron with the same momentum has a 1460 m/s velocity, which is clearly nonrelativistic. A more massive particle with the same momentum would have an even smaller velocity. This is borne out by the fact that it takes far less energy to give an electron the same momentum as a photon. But on a quantum-mechanical scale, especially for high-energy photons interacting with small masses, photon momentum is significant. Even on a large scale, photon momentum can have an effect if there are enough of them and if there is nothing to prevent the slow recoil of matter. Comet tails are one example, but there are also proposals to build space sails that use huge low-mass mirrors (made of aluminized Mylar) to reflect sunlight. In the vacuum of space, the mirrors would gradually recoil and could actually take spacecraft from place to place in the solar system. (See [link] .)

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask