<< Chapter < Page | Chapter >> Page > |
where is the universal gravitational constant, and is the mass of the body.
Quantum gravity, if developed, would be an improvement on both general relativity and quantum mechanics, but more mathematically difficult. Under what circumstances would it be necessary to use quantum gravity? Similarly, under what circumstances could general relativity be used? When could special relativity, quantum mechanics, or classical physics be used?
Does observed gravitational lensing correspond to a converging or diverging lens? Explain briefly.
Suppose you measure the red shifts of all the images produced by gravitational lensing, such as in [link] .You find that the central image has a red shift less than the outer images, and those all have the same red shift. Discuss how this not only shows that the images are of the same object, but also implies that the red shift is not affected by taking different paths through space. Does it imply that cosmological red shifts are not caused by traveling through space (light getting tired, perhaps)?
What are gravitational waves, and have they yet been observed either directly or indirectly?
Is the event horizon of a black hole the actual physical surface of the object?
Suppose black holes radiate their mass away and the lifetime of a black hole created by a supernova is about years. How does this lifetime compare with the accepted age of the universe? Is it surprising that we do not observe the predicted characteristic radiation?
What is the Schwarzschild radius of a black hole that has a mass eight times that of our Sun? Note that stars must be more massive than the Sun to form black holes as a result of a supernova.
23.6 km
Black holes with masses smaller than those formed in supernovas may have been created in the Big Bang. Calculate the radius of one that has a mass equal to the Earth’s.
Supermassive black holes are thought to exist at the center of many galaxies.
(a) What is the radius of such an object if it has a mass of Suns?
(b) What is this radius in light years?
(a)
(b)
Construct Your Own Problem
Consider a supermassive black hole near the center of a galaxy. Calculate the radius of such an object based on its mass. You must consider how much mass is reasonable for these large objects, and which is now nearly directly observed. (Information on black holes posted on the Web by NASA and other agencies is reliable, for example.)
Notification Switch
Would you like to follow the 'College physics' conversation and receive update notifications?