<< Chapter < Page Chapter >> Page >
n 1 A 1 v ¯ 1 = n 2 A 2 v ¯ 2 , size 12{n rSub { size 8{1} } A rSub { size 8{1} } {overline {v rSub { size 8{1} } }} =n rSub { size 8{2} } A rSub { size 8{2} } {overline {v rSub { size 8{2} } }} } {}

where n 1 size 12{n rSub { size 8{1} } } {} and n 2 size 12{n rSub { size 8{2} } } {} are the number of branches in each of the sections along the tube.

Calculating flow speed and vessel diameter: branching in the cardiovascular system

The aorta is the principal blood vessel through which blood leaves the heart in order to circulate around the body. (a) Calculate the average speed of the blood in the aorta if the flow rate is 5.0 L/min. The aorta has a radius of 10 mm. (b) Blood also flows through smaller blood vessels known as capillaries. When the rate of blood flow in the aorta is 5.0 L/min, the speed of blood in the capillaries is about 0.33 mm/s. Given that the average diameter of a capillary is 8.0 μ m , calculate the number of capillaries in the blood circulatory system.

Strategy

We can use Q = A v ¯ size 12{Q=A {overline {v}} } {} to calculate the speed of flow in the aorta and then use the general form of the equation of continuity to calculate the number of capillaries as all of the other variables are known.

Solution for (a)

The flow rate is given by Q = A v ¯ size 12{Q=A {overline {v}} } {} or v ¯ = Q πr 2 size 12{ {overline {v}} = { {Q} over {πr rSup { size 8{2} } } } } {} for a cylindrical vessel.

Substituting the known values (converted to units of meters and seconds) gives

v ¯ = 5.0 L/min 10 3 m 3 /L 1 min/ 60 s π 0 . 010 m 2 = 0 . 27 m/s . size 12{ { bar {v}}= { { left (5 "." 0`"L/min" right ) left ("10" rSup { size 8{ - 3} } `m rSup { size 8{3} } "/L" right ) left (1`"min/""60"`s right )} over {π left (0 "." "010 m" right ) rSup { size 8{2} } } } =0 "." "27"`"m/s"} {}

Solution for (b)

Using n 1 A 1 v ¯ 1 = n 2 A 2 v ¯ 1 size 12{n rSub { size 8{1} } A rSub { size 8{1} } {overline {v rSub { size 8{1} } }} =n rSub { size 8{2} } A rSub { size 8{2} } {overline {v rSub { size 8{2} } }} } {} , assigning the subscript 1 to the aorta and 2 to the capillaries, and solving for n 2 size 12{n rSub { size 8{2} } } {} (the number of capillaries) gives n 2 = n 1 A 1 v ¯ 1 A 2 v ¯ 2 . Converting all quantities to units of meters and seconds and substituting into the equation above gives

n 2 = 1 π 10 × 10 3 m 2 0.27 m/s π 4.0 × 10 6 m 2 0.33 × 10 3 m/s = 5.0 × 10 9 capillaries . size 12{n rSub { size 8{2} } = { { left (1 right ) left (π right ) left ("10" times "10" rSup { size 8{ - 3} } " m" right ) rSup { size 8{2} } left (0 "." "27"" m/s" right )} over { left (π right ) left (4 "." 0 times "10" rSup { size 8{ - 6} } " m" right ) rSup { size 8{2} } left (0 "." "33" times "10" rSup { size 8{ - 3} } " m/s" right )} } =5 "." 0 times "10" rSup { size 8{9} } " capillaries"} {}

Discussion

Note that the speed of flow in the capillaries is considerably reduced relative to the speed in the aorta due to the significant increase in the total cross-sectional area at the capillaries. This low speed is to allow sufficient time for effective exchange to occur although it is equally important for the flow not to become stationary in order to avoid the possibility of clotting. Does this large number of capillaries in the body seem reasonable? In active muscle, one finds about 200 capillaries per mm 3 size 12{"mm" rSup { size 8{3} } } {} , or about 200 × 10 6 size 12{"200" times "10" rSup { size 8{6} } } {} per 1 kg of muscle. For 20 kg of muscle, this amounts to about 4 × 10 9 size 12{4 times "10" rSup { size 8{9} } } {} capillaries.

Section summary

  • Flow rate Q size 12{Q} {} is defined to be the volume V size 12{V} {} flowing past a point in time t size 12{t} {} , or Q = V t size 12{Q= { {V} over {t} } } {} where V size 12{V} {} is volume and t size 12{t} {} is time.
  • The SI unit of volume is m 3 size 12{m rSup { size 8{3} } } {} .
  • Another common unit is the liter (L), which is 10 3 m 3 size 12{"10" rSup { size 8{ - 3} } `m rSup { size 8{3} } } {} .
  • Flow rate and velocity are related by Q = A v ¯ size 12{Q=A {overline {v}} } {} where A size 12{A} {} is the cross-sectional area of the flow and v ¯ size 12{ {overline {v}} } {} is its average velocity.
  • For incompressible fluids, flow rate at various points is constant. That is,
    Q 1 = Q 2 A 1 v ¯ 1 = A 2 v ¯ 2 n 1 A 1 v ¯ 1 = n 2 A 2 v ¯ 2 . size 12{ left none matrix { Q rSub { size 8{1} } =Q rSub { size 8{2} } {} ##A rSub { size 8{1} } {overline {v}} rSub { size 8{1} } =A rSub { size 8{2} } {overline {v}} rSub { size 8{2} } {} ## n rSub { size 8{1} } A rSub { size 8{1} } {overline {v}} rSub { size 8{1} } =n rSub { size 8{2} } A rSub { size 8{2} } {overline {v}} rSub { size 8{2} }} right rbrace "." } {}

Conceptual questions

What is the difference between flow rate and fluid velocity? How are they related?

Got questions? Get instant answers now!

Many figures in the text show streamlines. Explain why fluid velocity is greatest where streamlines are closest together. (Hint: Consider the relationship between fluid velocity and the cross-sectional area through which it flows.)

Got questions? Get instant answers now!

Identify some substances that are incompressible and some that are not.

Got questions? Get instant answers now!

Problems&Exercises

What is the average flow rate in cm 3 /s size 12{"cm" rSup { size 8{3} } "/s"} {} of gasoline to the engine of a car traveling at 100 km/h if it averages 10.0 km/L?

2.78 cm 3 /s size 12{"cm" rSup { size 8{3} } "/s"} {}

Got questions? Get instant answers now!

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask