<< Chapter < Page Chapter >> Page >

Strategy and Solution for (a)

The total resistance for a parallel combination of resistors is found using the equation below. Entering known values gives

1 R p = 1 R 1 + 1 R 2 + 1 R 3 = 1 1 . 00 Ω + 1 6 . 00 Ω + 1 13 . 0 Ω . size 12{ { {1} over {R rSub { size 8{p} } } } = { {1} over {R rSub { size 8{1} } } } + { {1} over {R rSub { size 8{2} } } } + { {1} over {R rSub { size 8{3} } } } = { {1} over {1 "." "00" %OMEGA } } + { {1} over {6 "." "00" %OMEGA } } + { {1} over {"13" "." 0 %OMEGA } } } {}

Thus,

1 R p = 1.00 Ω + 0 . 1667 Ω + 0 . 07692 Ω = 1 . 2436 Ω . size 12{ { {1} over {R rSub { size 8{p} } } } = { {1 "." "00"} over { %OMEGA } } + { {0 "." "167"} over { %OMEGA } } + { {0 "." "0769"} over { %OMEGA } } = { {1 "." "244"} over { %OMEGA } } } {}

(Note that in these calculations, each intermediate answer is shown with an extra digit.)

We must invert this to find the total resistance R p size 12{R rSub { size 8{p} } } {} . This yields

R p = 1 1 . 2436 Ω = 0 . 8041 Ω . size 12{R rSub { size 8{p} } = { {1} over {1 "." "2436"} } %OMEGA =0 "." "8041 " %OMEGA } {}

The total resistance with the correct number of significant digits is R p = 0 . 804 Ω . size 12{R rSub { size 8{p} } =0 "." "804" %OMEGA } {}

Discussion for (a)

R p is, as predicted, less than the smallest individual resistance.

Strategy and Solution for (b)

The total current can be found from Ohm’s law, substituting R p size 12{R rSub { size 8{p} } } {} for the total resistance. This gives

I = V R p = 12.0 V 0.8041 Ω = 14 . 92 A . size 12{I= { {V} over {R rSub { size 8{p} } } } = { {"12" "." 0" V"} over {0 "." "804 " %OMEGA } } ="14" "." "92"" A"} {}

Discussion for (b)

Current I size 12{I} {} for each device is much larger than for the same devices connected in series (see the previous example). A circuit with parallel connections has a smaller total resistance than the resistors connected in series.

Strategy and Solution for (c)

The individual currents are easily calculated from Ohm’s law, since each resistor gets the full voltage. Thus,

I 1 = V R 1 = 12 . 0 V 1 . 00 Ω = 12 . 0 A . size 12{I rSub { size 8{1} } = { {V} over {R rSub { size 8{1} } } } = { {"12" "." 0" V"} over {1 "." "00 " %OMEGA } } ="12" "." 0" A"} {}

Similarly,

I 2 = V R 2 = 12 . 0 V 6 . 00 Ω = 2 . 00 A size 12{I rSub { size 8{2} } = { {V} over {R rSub { size 8{2} } } } = { {"12" "." 0" V"} over {6 "." "00 " %OMEGA } } =2 "." "00"" A"} {}

and

I 3 = V R 3 = 12 . 0 V 13 . 0 Ω = 0 . 92 A . size 12{I rSub { size 8{3} } = { {V} over {R rSub { size 8{3} } } } = { {"12" "." 0" V"} over {"13" "." "0 " %OMEGA } } =0 "." "92"" A"} {}

Discussion for (c)

The total current is the sum of the individual currents:

I 1 + I 2 + I 3 = 14 . 92 A . size 12{I rSub { size 8{1} } +I rSub { size 8{2} } +I rSub { size 8{3} } ="14" "." "92"" A"} {}

This is consistent with conservation of charge.

Strategy and Solution for (d)

The power dissipated by each resistor can be found using any of the equations relating power to current, voltage, and resistance, since all three are known. Let us use P = V 2 R size 12{P= { {V rSup { size 8{2} } } over {R} } } {} , since each resistor gets full voltage. Thus,

P 1 = V 2 R 1 = ( 12 . 0 V ) 2 1 . 00 Ω = 144 W . size 12{P rSub { size 8{1} } = { {V rSup { size 8{2} } } over {R rSub { size 8{1} } } } = { { \( "12" "." 0" V" \) rSup { size 8{2} } } over {1 "." "00 " %OMEGA } } ="144"" W"} {}

Similarly,

P 2 = V 2 R 2 = ( 12 . 0 V ) 2 6 . 00 Ω = 24 . 0 W size 12{P rSub { size 8{2} } = { {V rSup { size 8{2} } } over {R rSub { size 8{2} } } } = { { \( "12" "." 0" V" \) rSup { size 8{2} } } over {6 "." "00 " %OMEGA } } ="24" "." 0" W"} {}

and

P 3 = V 2 R 3 = ( 12 . 0 V ) 2 13 . 0 Ω = 11 . 1 W . size 12{P rSub { size 8{3} } = { {V rSup { size 8{2} } } over {R rSub { size 8{3} } } } = { { \( "12" "." 0" V" \) rSup { size 8{2} } } over {"13" "." "0 " %OMEGA } } ="11" "." 1" W"} {}

Discussion for (d)

The power dissipated by each resistor is considerably higher in parallel than when connected in series to the same voltage source.

Strategy and Solution for (e)

The total power can also be calculated in several ways. Choosing P = IV size 12{P= ital "IV"} {} , and entering the total current, yields

P = IV = ( 14.92 A ) ( 12.0 V ) = 179 W . size 12{P= ital "IV"= \( "14" "." "92"" A" \) \( "12" "." 0" V" \) ="179" "." 1" W"} {}

Discussion for (e)

Total power dissipated by the resistors is also 179 W:

P 1 + P 2 + P 3 = 144 W + 24 . 0 W + 11 . 1 W = 179 W . size 12{P rSub { size 8{1} } +P rSub { size 8{2} } +P rSub { size 8{3} } ="144"" W"+"24" "." 0" W"+"11" "." 1" W"="179"" W"} {}

This is consistent with the law of conservation of energy.

Overall Discussion

Note that both the currents and powers in parallel connections are greater than for the same devices in series.

Major features of resistors in parallel

  1. Parallel resistance is found from 1 R p = 1 R 1 + 1 R 2 + 1 R 3 + . . . size 12{ { {1} over {R rSub { size 8{p} } } } = { {1} over {R rSub { size 8{1} } } } + { {1} over {R rSub { size 8{2} } } } + { {1} over {R rSub { size 8{3} } } } + "." "." "." } {} , and it is smaller than any individual resistance in the combination.
  2. Each resistor in parallel has the same full voltage of the source applied to it. (Power distribution systems most often use parallel connections to supply the myriad devices served with the same voltage and to allow them to operate independently.)
  3. Parallel resistors do not each get the total current; they divide it.

Combinations of series and parallel

More complex connections of resistors are sometimes just combinations of series and parallel. These are commonly encountered, especially when wire resistance is considered. In that case, wire resistance is in series with other resistances that are in parallel.

Questions & Answers

how do you get the 2/50
Abba Reply
number of sport play by 50 student construct discrete data
Aminu Reply
width of the frangebany leaves on how to write a introduction
Theresa Reply
Solve the mean of variance
Veronica Reply
Step 1: Find the mean. To find the mean, add up all the scores, then divide them by the number of scores. ... Step 2: Find each score's deviation from the mean. ... Step 3: Square each deviation from the mean. ... Step 4: Find the sum of squares. ... Step 5: Divide the sum of squares by n – 1 or N.
kenneth
what is error
Yakuba Reply
Is mistake done to something
Vutshila
Hy
anas
hy
What is the life teble
anas
hy
Jibrin
statistics is the analyzing of data
Tajudeen Reply
what is statics?
Zelalem Reply
how do you calculate mean
Gloria Reply
diveving the sum if all values
Shaynaynay
let A1,A2 and A3 events be independent,show that (A1)^c, (A2)^c and (A3)^c are independent?
Fisaye Reply
what is statistics
Akhisani Reply
data collected all over the world
Shaynaynay
construct a less than and more than table
Imad Reply
The sample of 16 students is taken. The average age in the sample was 22 years with astandard deviation of 6 years. Construct a 95% confidence interval for the age of the population.
Aschalew Reply
Bhartdarshan' is an internet-based travel agency wherein customer can see videos of the cities they plant to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400 a. what is the probability of getting more than 12,000 hits? b. what is the probability of getting fewer than 9,000 hits?
Akshay Reply
Bhartdarshan'is an internet-based travel agency wherein customer can see videos of the cities they plan to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400. a. What is the probability of getting more than 12,000 hits
Akshay
1
Bright
Sorry i want to learn more about this question
Bright
Someone help
Bright
a= 0.20233 b=0.3384
Sufiyan
a
Shaynaynay
How do I interpret level of significance?
Mohd Reply
It depends on your business problem or in Machine Learning you could use ROC- AUC cruve to decide the threshold value
Shivam
how skewness and kurtosis are used in statistics
Owen Reply
yes what is it
Taneeya
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 9

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask