<< Chapter < Page Chapter >> Page >
  • Derive expressions for total capacitance in series and in parallel.
  • Identify series and parallel parts in the combination of connection of capacitors.
  • Calculate the effective capacitance in series and parallel given individual capacitances.

Several capacitors may be connected together in a variety of applications. Multiple connections of capacitors act like a single equivalent capacitor. The total capacitance of this equivalent single capacitor depends both on the individual capacitors and how they are connected. There are two simple and common types of connections, called series and parallel , for which we can easily calculate the total capacitance. Certain more complicated connections can also be related to combinations of series and parallel.

Capacitance in series

[link] (a) shows a series connection of three capacitors with a voltage applied. As for any capacitor, the capacitance of the combination is related to charge and voltage by C = Q V size 12{C= { {Q} over {V} } } {} .

Note in [link] that opposite charges of magnitude Q size 12{Q} {} flow to either side of the originally uncharged combination of capacitors when the voltage V size 12{V} {} is applied. Conservation of charge requires that equal-magnitude charges be created on the plates of the individual capacitors, since charge is only being separated in these originally neutral devices. The end result is that the combination resembles a single capacitor with an effective plate separation greater than that of the individual capacitors alone. (See [link] (b).) Larger plate separation means smaller capacitance. It is a general feature of series connections of capacitors that the total capacitance is less than any of the individual capacitances.

When capacitors are connected in series, an equivalent capacitor would have a plate separation that is greater than that of any individual capacitor. Hence the series connections produce a resultant capacitance less than that of the individual capacitors.
(a) Capacitors connected in series. The magnitude of the charge on each plate is Q . (b) An equivalent capacitor has a larger plate separation d size 12{d} {} . Series connections produce a total capacitance that is less than that of any of the individual capacitors.

We can find an expression for the total capacitance by considering the voltage across the individual capacitors shown in [link] . Solving C = Q V size 12{C= { {Q} over {V} } } {} for V size 12{V} {} gives V = Q C size 12{V= { {Q} over {C} } } {} . The voltages across the individual capacitors are thus V 1 = Q C 1 size 12{ {V} rSub { size 8{1} } = { {Q} over { {C} rSub { size 8{1} } } } } {} , V 2 = Q C 2 size 12{ {V} rSub { size 8{2} } = { {Q} over { {C} rSub { size 8{2} } } } } {} , and V 3 = Q C 3 size 12{ {V} rSub { size 8{3} } = { {Q} over { {C} rSub { size 8{3} } } } } {} . The total voltage is the sum of the individual voltages:

V = V 1 + V 2 + V 3 . size 12{V= {V} rSub { size 8{1} } + {V} rSub { size 8{2} } + {V} rSub { size 8{3} } } {}

Now, calling the total capacitance C S size 12{C rSub { size 8{S} } } {} for series capacitance, consider that

V = Q C S = V 1 + V 2 + V 3 . size 12{V= { {Q} over { {C} rSub { size 8{S} } } } = {V} rSub { size 8{1} } + {V} rSub { size 8{2} } + {V} rSub { size 8{3} } } {}

Entering the expressions for V 1 size 12{V rSub { size 8{1} } } {} , V 2 size 12{V rSub { size 8{2} } } {} , and V 3 size 12{V rSub { size 8{3} } } {} , we get

Q C S = Q C 1 + Q C 2 + Q C 3 . size 12{ { {Q} over { {C} rSub { size 8{S} } } } = { {Q} over { {C} rSub { size 8{1} } } } + { {Q} over { {C} rSub { size 8{2} } } } + { {Q} over { {C} rSub { size 8{3} } } } } {}

Canceling the Q size 12{Q} {} s, we obtain the equation for the total capacitance in series C S size 12{ {C} rSub { size 8{S} } } {} to be

1 C S = 1 C 1 + 1 C 2 + 1 C 3 + . . . , size 12{ { {1} over { {C} rSub { size 8{S} } } } = { {1} over { {C} rSub { size 8{1} } } } + { {1} over { {C} rSub { size 8{2} } } } + { {1} over { {C} rSub { size 8{3} } } } + "." "." "." } {}

where “...” indicates that the expression is valid for any number of capacitors connected in series. An expression of this form always results in a total capacitance C S size 12{ {C} rSub { size 8{S} } } {} that is less than any of the individual capacitances C 1 size 12{ {C} rSub { size 8{1} } } {} , C 2 size 12{ {C} rSub { size 8{2} } } {} , ..., as the next example illustrates.

Total capacitance in series, C s size 12{ {C} rSub { size 8{S} } } {}

Total capacitance in series: 1 C S = 1 C 1 + 1 C 2 + 1 C 3 + . . . size 12{ { {1} over { {C} rSub { size 8{S} } } } = { {1} over { {C} rSub { size 8{1} } } } + { {1} over { {C} rSub { size 8{2} } } } + { {1} over { {C} rSub { size 8{3} } } } + "." "." "." } {}

What is the series capacitance?

Find the total capacitance for three capacitors connected in series, given their individual capacitances are 1.000, 5.000, and 8.000 µF size 12{mF} {} .

Strategy

With the given information, the total capacitance can be found using the equation for capacitance in series.

Solution

Entering the given capacitances into the expression for 1 C S size 12{ { {1} over { {C} rSub { size 8{S} } } } } {} gives 1 C S = 1 C 1 + 1 C 2 + 1 C 3 size 12{ { {1} over { {C} rSub { size 8{S} } } } = { {1} over { {C} rSub { size 8{1} } } } + { {1} over { {C} rSub { size 8{2} } } } + { {1} over { {C} rSub { size 8{3} } } } } {} .

1 C S = 1 1 . 000 µF + 1 5 . 000 µF + 1 8 . 000 µF = 1 . 325 µF size 12{ { {1} over { {C} rSub { size 8{S} } } } = { {1} over {1 "." "00" mF} } + { {1} over {5 "." "00" mF} } + { {1} over {8 "." "00" mF} } = { {1 "." "325"} over {mF} } } {}

Inverting to find C S size 12{C rSub { size 8{S} } } {} yields {} C S = µF 1 . 325 = 0 . 755 µF size 12{ {C} rSub { size 8{S} } = { {mF} over {1 "." "325"} } =0 "." "755" mF} {} .

Discussion

The total series capacitance C s size 12{ {C} rSub { size 8{S} } } {} is less than the smallest individual capacitance, as promised. In series connections of capacitors, the sum is less than the parts. In fact, it is less than any individual. Note that it is sometimes possible, and more convenient, to solve an equation like the above by finding the least common denominator, which in this case (showing only whole-number calculations) is 40. Thus,

1 C S = 40 40 µF + 8 40 µF + 5 40 µF = 53 40 µF , size 12{ { {1} over { {C} rSub { size 8{S} } } } = { {"40"} over {"40" mF} } + { {8} over {"40" mF} } + { {5} over {"40" mF} } = { {"53"} over {"40" mF} } } {}

so that

C S = 40 µF 53 = 0 . 755 µF . size 12{ {C} rSub { size 8{S} } = { {"40" µF} over {"53"} } =0 "." "755" µF} {}
Got questions? Get instant answers now!

Questions & Answers

it is the relatively stable flow of income
Chidubem Reply
what is circular flow of income
Divine Reply
branches of macroeconomics
SHEDRACK Reply
what is Flexible exchang rate?
poudel Reply
is gdp a reliable measurement of wealth
Atega Reply
introduction to econometrics
Husseini Reply
Hi
mostafa
hi
LEMLEM
hello
Sammol
hi
Mahesh
bi
Ruqayat
hi
Ruqayat
Hi fellas
Nyawa
hey
Sammol
hi
God
hello
Jahara
Good morning
Jorge
hi
abubakar
hi
Nmesoma
hi
Mahesh
Hi
Tom
Why is unemployment rate never zero at full employment?
Priyanka Reply
bcoz of existence of frictional unemployment in our economy.
Umashankar
what is flexible exchang rate?
poudel
due to existence of the pple with disabilities
Abdulraufu
the demand of a good rises, causing the demand for another good to fall
Rushawn Reply
is it possible to leave every good at the same level
Joseph
I don't think so. because check it, if the demand for chicken increases, people will no longer consume fish like they used to causing a fall in the demand for fish
Anuolu
is not really possible to let the value of a goods to be same at the same time.....
Salome
Suppose the inflation rate is 6%, does it mean that all the goods you purchase will cost 6% more than previous year? Provide with reasoning.
Geetha Reply
Not necessarily. To measure the inflation rate economists normally use an averaged price index of a basket of certain goods. So if you purchase goods included in the basket, you will notice that you pay 6% more, otherwise not necessarily.
Waeth
discus major problems of macroeconomics
Alii Reply
what is the problem of macroeconomics
Yoal
Economic growth Stable prices and low unemployment
Ephraim
explain inflationcause and itis degre
Miresa Reply
what is inflation
Getu
increase in general price levels
WEETO
Good day How do I calculate this question: C= 100+5yd G= 2000 T= 2000 I(planned)=200. Suppose the actual output is 3000. What is the level of planned expenditures at this level of output?
Chisomo Reply
how to calculate actual output?
Chisomo
how to calculate the equilibrium income
Beshir
Criteria for determining money supply
Thapase Reply
who we can define macroeconomics in one line
Muhammad
Aggregate demand
Mohammed
C=k100 +9y and i=k50.calculate the equilibrium level of output
Mercy Reply
Hi
Isiaka
Hi
Geli
hy
Man
👋
Bahunda
hy how are you?
Man
ys
Amisha
how are you guys
Sekou
f9 guys
Amisha
how are you guys
Sekou
ys am also fine
Amisha
fine and you guys
Geli
from Nepal
Amisha
nawalparasi district from belatari
Amisha
nd u
Amisha
I am Camara from Guinea west Africa... happy to meet you guys here
Sekou
ma management ho
Amisha
ahile becheclor ho
Amisha
hjr ktm bta ho ani k kaam grnu hunxa tw
Amisha
belatari
Amisha
1st year ho
Amisha
nd u
Amisha
ahh
Amisha
kaha biratnagar
Amisha
ys
Amisha
kina k vo
Amisha
money as unit of account means what?
Kalombe
A unit of account is something that can be used to value goods and services and make calculations
Jim
all of you please speak in English I can't understand you're language
Muhammad
I want to know how can we define macroeconomics in one line
Muhammad
it must be .9 or 0.9 no Mpc is greater than 1 Y=100+.9Y+50 Y-.9Y=150 0.1Y/0.1=150/0.1 Y=1500
Kalombe
Mercy is it clear?😋
Kalombe
hi can someone help me on this question If a negative shocks shifts the IS curve to the left, what type of policy do you suggest so as to stabilize the level of output? discuss your answer using appropriate graph.
Galge Reply
if interest rate is increased this will will reduce the level of income shifting the curve to the left ◀️
Kalombe
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask