<< Chapter < Page Chapter >> Page >
KE rot = 1 2 2 . size 12{"KE" rSub { size 8{"rot"} } = { {1} over {2} } Iω rSup { size 8{2} } } {}

The expression for rotational kinetic energy is exactly analogous to translational kinetic energy, with I size 12{I} {} being analogous to m size 12{m} {} and ω size 12{ω} {} to v size 12{v} {} . Rotational kinetic energy has important effects. Flywheels, for example, can be used to store large amounts of rotational kinetic energy in a vehicle, as seen in [link] .

The figure shows a bus carrying a large flywheel on its board in which rotational kinetic energy is stored.
Experimental vehicles, such as this bus, have been constructed in which rotational kinetic energy is stored in a large flywheel. When the bus goes down a hill, its transmission converts its gravitational potential energy into KE rot size 12{ ital "KE" rSub { size 8{ ital "rot"} } } {} . It can also convert translational kinetic energy, when the bus stops, into KE rot size 12{ ital "KE" rSub { size 8{ ital "rot"} } } {} . The flywheel’s energy can then be used to accelerate, to go up another hill, or to keep the bus from going against friction.

Calculating the work and energy for spinning a grindstone

Consider a person who spins a large grindstone by placing her hand on its edge and exerting a force through part of a revolution as shown in [link] . In this example, we verify that the work done by the torque she exerts equals the change in rotational energy. (a) How much work is done if she exerts a force of 200 N through a rotation of 1.00 rad ( 57.3º ) size 12{1 "." "00"`"rad" \( "57" "." 3 \) rSup { size 8{ circ } } } {} ? The force is kept perpendicular to the grindstone’s 0.320-m radius at the point of application, and the effects of friction are negligible. (b) What is the final angular velocity if the grindstone has a mass of 85.0 kg? (c) What is the final rotational kinetic energy? (It should equal the work.)

Strategy

To find the work, we can use the equation net W = net τ θ size 12{"net "W= left ("net "τ right )θ} {} . We have enough information to calculate the torque and are given the rotation angle. In the second part, we can find the final angular velocity using one of the kinematic relationships. In the last part, we can calculate the rotational kinetic energy from its expression in KE rot = 1 2 2 size 12{"KE" rSub { size 8{"rot"} } = { {1} over {2} } Iω rSup { size 8{2} } } {} .

Solution for (a)

The net work is expressed in the equation

net W = net τ θ , size 12{"net "W= left ("net "τ right )θ} {}

where net τ size 12{τ} {} is the applied force multiplied by the radius ( rF ) size 12{ \( ital "rF" \) } {} because there is no retarding friction, and the force is perpendicular to r size 12{r} {} . The angle θ size 12{θ} {} is given. Substituting the given values in the equation above yields

net W = rF θ = 0.320 m 200 N 1.00 rad = 64.0 N m.

Noting that 1 N · m = 1 J ,

net W = 64.0 J . size 12{"net "W="64" "." 0" J"} {}
The figure shows a large grindstone of radius r which is being given a spin by applying a force F in a counterclockwise direction, as indicated by the arrows.
A large grindstone is given a spin by a person grasping its outer edge.

Solution for (b)

To find ω size 12{ω} {} from the given information requires more than one step. We start with the kinematic relationship in the equation

ω 2 = ω 0 2 + 2 αθ . size 12{ω rSup { size 8{2} } =ω rSub { size 8{0} rSup { size 8{2} } } +2 ital "αθ"} {}

Note that ω 0 = 0 size 12{ω rSub { size 8{0} } =0} {} because we start from rest. Taking the square root of the resulting equation gives

ω = 2 αθ 1 / 2 . size 12{ω= left (2 ital "αθ" right ) rSup { size 8{1/2} } } {}

Now we need to find α size 12{α} {} . One possibility is

α = net τ I , size 12{α= { {"net "τ} over {I} } } {}

where the torque is

net τ = rF = 0.320 m 200 N = 64.0 N m . size 12{"net "τ= ital "rF"= left (0 "." "320"" m" right ) left ("200"" N" right )="64" "." 0" N" cdot m} {}

The formula for the moment of inertia for a disk is found in [link] :

I = 1 2 MR 2 = 0.5 85.0 kg 0.320 m 2 = 4.352 kg m 2 . size 12{I= { {1} over {2} } ital "MR" rSup { size 8{2} } =0 "." 5 left ("85" "." 0" kg" right ) left (0 "." "320"" m" right ) rSup { size 8{2} } =4 "." "352"" kg" cdot m rSup { size 8{2} } } {}

Substituting the values of torque and moment of inertia into the expression for α size 12{α} {} , we obtain

α = 64 . 0 N m 4.352 kg m 2 = 14.7 rad s 2 . size 12{α= { {"64" "." "0 N" cdot m} over {4 "." "352"" kg" cdot m rSup { size 8{2} } } } ="14" "." 7 { {"rad"} over {s rSup { size 8{2} } } } } {}

Now, substitute this value and the given value for θ size 12{θ} {} into the above expression for ω size 12{ω} {} :

ω = 2 αθ 1 / 2 = 2 14.7 rad s 2 1.00 rad 1 / 2 = 5.42 rad s . size 12{ω= left (2 ital "αθ" right ) rSup { size 8{1/2} } = left [2 left ("14" "." 7 { {"rad"} over {s rSup { size 8{2} } } } right ) left (1 "." "00"" rad" right ) right ] rSup { size 8{1/2} } =5 "." "42" { {"rad"} over {s} } } {}

Solution for (c)

The final rotational kinetic energy is

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask