<< Chapter < Page Chapter >> Page >

Percent relative humidity

We define percent relative humidity    as the ratio of vapor density to saturation vapor density, or

percent relative humidity = vapor density saturation vapor density × 100 size 12{ size 11{"percent relative humidity"= { { size 11{"vapor density"}} over { size 11{"saturation vapor density"}} } times "100"}} {}

We can use this and the data in [link] to do a variety of interesting calculations, keeping in mind that relative humidity is based on the comparison of the partial pressure of water vapor in air and ice.

Calculating humidity and dew point

(a) Calculate the percent relative humidity on a day when the temperature is 25 . 0 º C size 12{"25" "." 0°C} {} and the air contains 9.40 g of water vapor per m 3 size 12{m rSup { size 8{3} } } {} . (b) At what temperature will this air reach 100% relative humidity (the saturation density)? This temperature is the dew point. (c) What is the humidity when the air temperature is 25 . 0 º C size 12{"25" "." 0°C} {} and the dew point is 10 . 0 º C size 12{ +- "10" "." 0°C} {} ?

Strategy and Solution

(a) Percent relative humidity is defined as the ratio of vapor density to saturation vapor density.

percent relative humidity = vapor density saturation vapor density × 100 size 12{ size 11{"percent relative humidity"= { { size 11{"vapor density"}} over { size 11{"saturation vapor density"}} } times "100"}} {}

The first is given to be 9 . 40 g/m 3 size 12{9 "." "40 g/m" rSup { size 8{3} } } {} , and the second is found in [link] to be 23 . 0 g/m 3 size 12{"23" "." "0 g/m" rSup { size 8{3} } } {} . Thus,

percent relative humidity = 9 . 40 g/m 3 23 . 0 g/m 3 × 100 = 40 . 9 .% size 12{ size 11{"percent relative humidity"= { { size 11{9 "." "40 g/m" rSup { size 8{3} } }} over { size 12{"23" "." "0 g/m" rSup { size 8{3} } } } } ´"100"="40" "." 9% "." }} {}

(b) The air contains 9 . 40 g/m 3 size 12{9 "." "40 g/m" rSup { size 8{3} } } {} of water vapor. The relative humidity will be 100% at a temperature where 9 . 40 g/m 3 size 12{9 "." "40 g/m" rSup { size 8{3} } } {} is the saturation density. Inspection of [link] reveals this to be the case at 10 . 0 º C size 12{"10" "." 0°C} {} , where the relative humidity will be 100%. That temperature is called the dew point for air with this concentration of water vapor.

(c) Here, the dew point temperature is given to be 10 . 0 º C size 12{ +- "10" "." 0°C} {} . Using [link] , we see that the vapor density is 2 . 36 g/m 3 size 12{2 "." "36 g/m" rSup { size 8{3} } } {} , because this value is the saturation vapor density at 10 . 0 º C size 12{ +- "10" "." 0°C} {} . The saturation vapor density at 25 . 0 º C size 12{"25" "." 0°C} {} is seen to be 23 . 0 g/m 3 size 12{"23" "." "0 g/m" rSup { size 8{3} } } {} . Thus, the relative humidity at 25 . 0 º C size 12{"25" "." 0°C} {} is

percent relative humidity = 2 . 36 g/m 3 23 . 0 g/m 3 × 100 = 10 . 3 % . size 12{ size 11{"percent relative humidity"= { { size 11{2 "." "36 g/m" rSup { size 8{3} } }} over { size 12{"23" "." "0 g/m" rSup { size 8{3} } } } } ×"100"="10" "." 3% "." }} {}

Discussion

The importance of dew point is that air temperature cannot drop below 10 . 0 º C size 12{"10" "." 0°C} {} in part (b), or 10 . 0 º C size 12{ +- "10" "." 0°C} {} in part (c), without water vapor condensing out of the air. If condensation occurs, considerable transfer of heat occurs (discussed in Heat and Heat Transfer Methods ), which prevents the temperature from further dropping. When dew points are below 0 ºC size 12{0°C} {} , freezing temperatures are a greater possibility, which explains why farmers keep track of the dew point. Low humidity in deserts means low dew-point temperatures. Thus condensation is unlikely. If the temperature drops, vapor does not condense in liquid drops. Because no heat is released into the air, the air temperature drops more rapidly compared to air with higher humidity. Likewise, at high temperatures, liquid droplets do not evaporate, so that no heat is removed from the gas to the liquid phase. This explains the large range of temperature in arid regions.

Why does water boil at 100 º C size 12{"100"°C} {} ? You will note from [link] that the vapor pressure of water at 100 º C size 12{"100"°C} {} is 1 . 01 × 10 5 Pa size 12{1 "." "01"´"10" rSup { size 8{5} } " Pa"} {} , or 1.00 atm. Thus, it can evaporate without limit at this temperature and pressure. But why does it form bubbles when it boils? This is because water ordinarily contains significant amounts of dissolved air and other impurities, which are observed as small bubbles of air in a glass of water. If a bubble starts out at the bottom of the container at 20 º C size 12{"20"°C} {} , it contains water vapor (about 2.30%). The pressure inside the bubble is fixed at 1.00 atm (we ignore the slight pressure exerted by the water around it). As the temperature rises, the amount of air in the bubble stays the same, but the water vapor increases; the bubble expands to keep the pressure at 1.00 atm. At 100 º C size 12{"100"°C} {} , water vapor enters the bubble continuously since the partial pressure of water is equal to 1.00 atm in equilibrium. It cannot reach this pressure, however, since the bubble also contains air and total pressure is 1.00 atm. The bubble grows in size and thereby increases the buoyant force. The bubble breaks away and rises rapidly to the surface—we call this boiling! (See [link] .)

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask