<< Chapter < Page Chapter >> Page >
P 1 + 1 2 ρv 1 2 + ρ gh 1 = P 2 + 1 2 ρv 2 2 + ρ gh 2 . size 12{P rSub { size 8{1} } + { {1} over {2} } ρv rSub { size 8{1} } "" lSup { size 8{2} } +ρ ital "gh" rSub { size 8{1} } =P rSub { size 8{2} } + { {1} over {2} } ρv rSub { size 8{2} } "" lSup { size 8{2} } +ρ ital "gh" rSub { size 8{2} } "." } {}

Bernoulli’s equation is a form of the conservation of energy principle. Note that the second and third terms are the kinetic and potential energy with m size 12{m} {} replaced by ρ size 12{ρ} {} . In fact, each term in the equation has units of energy per unit volume. We can prove this for the second term by substituting ρ = m / V size 12{ρ=m/V} {} into it and gathering terms:

1 2 ρv 2 = 1 2 mv 2 V = KE V . size 12{ { {1} over {2} } ρv rSup { size 8{2} } = { { { {1} over {2} } ital "mv" rSup { size 8{2} } } over {V} } = { {"KE"} over {V} } "."} {}

So 1 2 ρv 2 size 12{ { { size 8{1} } over { size 8{2} } } ρv rSup { size 8{2} } } {} is the kinetic energy per unit volume. Making the same substitution into the third term in the equation, we find

ρ gh = mgh V = PE g V , size 12{ρ ital "gh"= { { ital "mgh"} over {V} } = { {"PE" rSub { size 8{"g"} } } over {V} } "."} {}

so ρ gh size 12{ρ ital "gh"} {} is the gravitational potential energy per unit volume. Note that pressure P size 12{P} {} has units of energy per unit volume, too. Since P = F / A size 12{P=F/A} {} , its units are N/m 2 size 12{"N/m" rSup { size 8{2} } } {} . If we multiply these by m/m, we obtain N m/m 3 = J/m 3 size 12{N cdot "m/m" rSup { size 8{3} } ="J/m" rSup { size 8{3} } } {} , or energy per unit volume. Bernoulli’s equation is, in fact, just a convenient statement of conservation of energy for an incompressible fluid in the absence of friction.

Making connections: conservation of energy

Conservation of energy applied to fluid flow produces Bernoulli’s equation. The net work done by the fluid’s pressure results in changes in the fluid’s KE size 12{"KE"} {} and PE g size 12{"PE" rSub { size 8{g} } } {} per unit volume. If other forms of energy are involved in fluid flow, Bernoulli’s equation can be modified to take these forms into account. Such forms of energy include thermal energy dissipated because of fluid viscosity.

The general form of Bernoulli’s equation has three terms in it, and it is broadly applicable. To understand it better, we will look at a number of specific situations that simplify and illustrate its use and meaning.

Bernoulli’s equation for static fluids

Let us first consider the very simple situation where the fluid is static—that is, v 1 = v 2 = 0 size 12{v rSub { size 8{1} } =v rSub { size 8{2} } =0} {} . Bernoulli’s equation in that case is

P 1 + ρ gh 1 = P 2 + ρ gh 2 . size 12{P rSub { size 8{1} } +ρ ital "gh" rSub { size 8{1} } =P rSub { size 8{2} } +ρ ital "gh" rSub { size 8{2} } "."} {}

We can further simplify the equation by taking h 2 = 0 size 12{h rSub { size 8{2} } =0} {} (we can always choose some height to be zero, just as we often have done for other situations involving the gravitational force, and take all other heights to be relative to this). In that case, we get

P 2 = P 1 + ρ gh 1 . size 12{P rSub { size 8{2} } =P rSub { size 8{1} } +ρ ital "gh" rSub { size 8{1} } "."} {}

This equation tells us that, in static fluids, pressure increases with depth. As we go from point 1 to point 2 in the fluid, the depth increases by h 1 size 12{h rSub { size 8{1} } } {} , and consequently, P 2 size 12{P rSub { size 8{2} } } {} is greater than P 1 size 12{P rSub { size 8{1} } } {} by an amount ρ gh 1 size 12{ρ ital "gh" rSub { size 8{1} } } {} . In the very simplest case, P 1 size 12{P rSub { size 8{1} } } {} is zero at the top of the fluid, and we get the familiar relationship P = ρ gh size 12{P=ρ ital "gh"} {} . (Recall that P = ρgh size 12{P=hρg} {} and Δ PE g = mgh . size 12{Δ"PE" rSub { size 8{g} } = ital "mgh"} {} ) Bernoulli’s equation includes the fact that the pressure due to the weight of a fluid is ρ gh size 12{ρ ital "gh"} {} . Although we introduce Bernoulli’s equation for fluid flow, it includes much of what we studied for static fluids in the preceding chapter.

Bernoulli’s principle—bernoulli’s equation at constant depth

Another important situation is one in which the fluid moves but its depth is constant—that is, h 1 = h 2 size 12{h rSub { size 8{1} } =h rSub { size 8{2} } } {} . Under that condition, Bernoulli’s equation becomes

P 1 + 1 2 ρv 1 2 = P 2 + 1 2 ρv 2 2 . size 12{P rSub { size 8{1} } + { {1} over {2} } ρv rSub { size 8{1} } "" lSup { size 8{2} } =P rSub { size 8{2} } + { {1} over {2} } ρv rSub { size 8{2} } "" lSup { size 8{2} } "." } {}

Situations in which fluid flows at a constant depth are so important that this equation is often called Bernoulli’s principle    . It is Bernoulli’s equation for fluids at constant depth. (Note again that this applies to a small volume of fluid as we follow it along its path.) As we have just discussed, pressure drops as speed increases in a moving fluid. We can see this from Bernoulli’s principle. For example, if v 2 size 12{v rSub { size 8{2} } } {} is greater than v 1 size 12{v rSub { size 8{1} } } {} in the equation, then P 2 size 12{P rSub { size 8{2} } } {} must be less than P 1 size 12{P rSub { size 8{1} } } {} for the equality to hold.

Questions & Answers

what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
What are the treatment for autism?
Magret Reply
hello. autism is a umbrella term. autistic kids have different disorder overlapping. for example. a kid may show symptoms of ADHD and also learning disabilities. before treatment please make sure the kid doesn't have physical disabilities like hearing..vision..speech problem. sometimes these
Jharna
continue.. sometimes due to these physical problems..the diagnosis may be misdiagnosed. treatment for autism. well it depends on the severity. since autistic kids have problems in communicating and adopting to the environment.. it's best to expose the child in situations where the child
Jharna
child interact with other kids under doc supervision. play therapy. speech therapy. Engaging in different activities that activate most parts of the brain.. like drawing..painting. matching color board game. string and beads game. the more you interact with the child the more effective
Jharna
results you'll get.. please consult a therapist to know what suits best on your child. and last as a parent. I know sometimes it's overwhelming to guide a special kid. but trust the process and be strong and patient as a parent.
Jharna
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask