<< Chapter < Page Chapter >> Page >
  • Explain the differences and similarities between AC and DC current.
  • Calculate rms voltage, current, and average power.
  • Explain why AC current is used for power transmission.

Alternating current

Most of the examples dealt with so far, and particularly those utilizing batteries, have constant voltage sources. Once the current is established, it is thus also a constant. Direct current (DC) is the flow of electric charge in only one direction. It is the steady state of a constant-voltage circuit. Most well-known applications, however, use a time-varying voltage source. Alternating current (AC) is the flow of electric charge that periodically reverses direction. If the source varies periodically, particularly sinusoidally, the circuit is known as an alternating current circuit. Examples include the commercial and residential power that serves so many of our needs. [link] shows graphs of voltage and current versus time for typical DC and AC power. The AC voltages and frequencies commonly used in homes and businesses vary around the world.

Part a shows a graph of voltage V and current I versus time for a D C source. The time is along the x axis and V and I are along the y axis. The graph shows that the voltage V sub D C and the current I sub D C do not vary with time. Part b shows the variation of voltage V and current I with time for an A C source. The time is along the horizontal axis and V and I are along the vertical axis. The graph for I is a progressing sine wave with a peak value I sub zero on the positive y axis and negative I sub zero on the negative y axis. The graph for V is a progressing sine wave with a higher amplitude than the current curve with a peak value V sub zero on the positive y axis and negative V sub zero on the negative y axis. The peak values of the voltage and current sine waves occur at the same time because they are in phase.
(a) DC voltage and current are constant in time, once the current is established. (b) A graph of voltage and current versus time for 60-Hz AC power. The voltage and current are sinusoidal and are in phase for a simple resistance circuit. The frequencies and peak voltages of AC sources differ greatly.
The potential difference variation of an alternating current voltage source with time is shown as a progressing sine wave. The voltage is shown along the vertical axis and the time is along the horizontal axis. Circuit diagrams show that current flowing in one direction corresponds to positive values of the voltage sine wave. Current flowing in the opposite direction in the circuit corresponds to negative values of the voltage sine wave. The maximum value of the voltage sine wave is plus V sub zero. The minimum value of the voltage sine wave is minus V sub zero.
The potential difference V between the terminals of an AC voltage source fluctuates as shown. The mathematical expression for V is given by V = V 0 sin 2 π ft size 12{V = V rSub { size 8{0} } "sin"" 2"π ital "ft"} {} .

[link] shows a schematic of a simple circuit with an AC voltage source. The voltage between the terminals fluctuates as shown, with the AC voltage    given by

V = V 0 sin 2 π ft, size 12{V = V rSub { size 8{0} } "sin"" 2"π ital "ft"} {}

where V size 12{V} {} is the voltage at time t size 12{t} {} , V 0 size 12{V rSub { size 8{0} } } {} is the peak voltage, and f size 12{f} {} is the frequency in hertz. For this simple resistance circuit, I = V/R size 12{I = ital "V/R"} {} , and so the AC current    is

I = I 0 sin 2 π ft, size 12{I = I rSub { size 8{0} } " sin 2"π ital "ft"} {}

where I size 12{I} {} is the current at time t size 12{t} {} , and I 0 = V 0 /R size 12{I rSub { size 8{0} } = V rSub { size 8{0} } ital "/R"} {} is the peak current. For this example, the voltage and current are said to be in phase, as seen in [link] (b).

Current in the resistor alternates back and forth just like the driving voltage, since I = V/R size 12{I = ital "V/R"} {} . If the resistor is a fluorescent light bulb, for example, it brightens and dims 120 times per second as the current repeatedly goes through zero. A 120-Hz flicker is too rapid for your eyes to detect, but if you wave your hand back and forth between your face and a fluorescent light, you will see a stroboscopic effect evidencing AC. The fact that the light output fluctuates means that the power is fluctuating. The power supplied is P = IV size 12{P = ital "IV"} {} . Using the expressions for I size 12{I} {} and V size 12{V} {} above, we see that the time dependence of power is P = I 0 V 0 sin 2 2 π ft size 12{P= I rSub { size 8{0} } V rSub { size 8{0} } "sin" rSup { size 8{2} } " 2"π ital "ft"} {} , as shown in [link] .

Making connections: take-home experiment—ac/dc lights

Wave your hand back and forth between your face and a fluorescent light bulb. Do you observe the same thing with the headlights on your car? Explain what you observe. Warning: Do not look directly at very bright light .

A graph showing the variation of power P with time t. The power is along the vertical axis and time is along the horizontal axis. The curve is a sine wave starting at the origin on the horizontal axis and having the crests and troughs both above the positive horizontal axis. The maximum value of power is given by the peak value, which is the product of I sub zero and V sub zero. The average power is indicated by a dotted line through the center of the wave parallel to the horizontal axis with a value half of the product of I sub zero and V sub zero.
AC power as a function of time. Since the voltage and current are in phase here, their product is non-negative and fluctuates between zero and I 0 V 0 size 12{I rSub { size 8{0} } V rSub { size 8{0} } } {} . Average power is ( 1 / 2 ) I 0 V 0 size 12{ \( 1/2 \) I rSub { size 8{0} } V rSub { size 8{0} } } {} .

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask