2.4 Acceleration  (Page 3/10)

 Page 3 / 10

Calculating acceleration: a racehorse leaves the gate

A racehorse coming out of the gate accelerates from rest to a velocity of 15.0 m/s due west in 1.80 s. What is its average acceleration?

Strategy

First we draw a sketch and assign a coordinate system to the problem. This is a simple problem, but it always helps to visualize it. Notice that we assign east as positive and west as negative. Thus, in this case, we have negative velocity.

We can solve this problem by identifying $\Delta v$ and $\Delta t$ from the given information and then calculating the average acceleration directly from the equation $\stackrel{-}{a}=\frac{\Delta v}{\Delta t}=\frac{{v}_{f}-{v}_{0}}{{t}_{f}-{t}_{0}}$ .

Solution

1. Identify the knowns. ${v}_{0}=0$ , ${v}_{f}=-\text{15}\text{.0 m/s}$ (the minus sign indicates direction toward the west), $\Delta t=1\text{.80 s}$ .

2. Find the change in velocity. Since the horse is going from zero to $-\text{15.0 m/s}$ , its change in velocity equals its final velocity: $\Delta v={v}_{f}=-\text{15}\text{.0 m/s}$ .

3. Plug in the known values ( $\Delta v$ and $\Delta t$ ) and solve for the unknown $\stackrel{-}{a}$ .

$\stackrel{-}{a}=\frac{\Delta v}{\Delta t}=\phantom{\rule{0.15em}{0ex}}\frac{-\text{15}\text{.0 m/s}}{1\text{.80 s}}=-8\text{.33 m}{\text{/s}}^{2}.$

Discussion

The minus sign for acceleration indicates that acceleration is toward the west. An acceleration of $8\text{.33 m}{\text{/s}}^{2}$ due west means that the horse increases its velocity by 8.33 m/s due west each second, that is, 8.33 meters per second per second, which we write as $8\text{.33 m}{\text{/s}}^{2}$ . This is truly an average acceleration, because the ride is not smooth. We shall see later that an acceleration of this magnitude would require the rider to hang on with a force nearly equal to his weight.

Instantaneous acceleration

Instantaneous acceleration $a$ , or the acceleration at a specific instant in time , is obtained by the same process as discussed for instantaneous velocity in Time, Velocity, and Speed —that is, by considering an infinitesimally small interval of time. How do we find instantaneous acceleration using only algebra? The answer is that we choose an average acceleration that is representative of the motion. [link] shows graphs of instantaneous acceleration versus time for two very different motions. In [link] (a), the acceleration varies slightly and the average over the entire interval is nearly the same as the instantaneous acceleration at any time. In this case, we should treat this motion as if it had a constant acceleration equal to the average (in this case about $1\text{.}8 m{\text{/s}}^{2}$ ). In [link] (b), the acceleration varies drastically over time. In such situations it is best to consider smaller time intervals and choose an average acceleration for each. For example, we could consider motion over the time intervals from 0 to 1.0 s and from 1.0 to 3.0 s as separate motions with accelerations of $+3\text{.}0 m{\text{/s}}^{2}$ and $\text{–2}\text{.}0 m{\text{/s}}^{2}$ , respectively.

Determine the total force and the absolute pressure on the bottom of a swimming pool 28.0m by 8.5m whose uniform depth is 1 .8m.
how solve this problem?
Foday
P(pressure)=density ×depth×acceleration due to gravity Force =P×Area(28.0x8.5)
Fomukom
for the answer to complete, the units need specified why
That's just how the AP grades. Otherwise, you could be talking about m/s when the answer requires m/s^2. They need to know what you are referring to.
Kyle
Suppose a speck of dust in an electrostatic precipitator has 1.0000×1012 protons in it and has a net charge of –5.00 nC (a very large charge for a small speck). How many electrons does it have?
how would I work this problem
Alexia
how can you have not an integer number of protons? If, on the other hand it supposed to be 1e12, then 1.6e-19C/proton • 1e12 protons=1.6e-7 C is the charge of the protons in the speck, so the difference between this and 5e-9C is made up by electrons
Igor
what is angular velocity
angular velocity can be defined as the rate of change in radian over seconds.
Fidelis
Why does earth exert only a tiny downward pull?
hello
Islam
Why is light bright?
an 8.0 capacitor is connected by to the terminals of 60Hz whoes rms voltage is 150v. a.find the capacity reactance and rms to the circuit
thanks so much. i undersooth well
what is physics
is the study of matter in relation to energy
Kintu
physics can be defined as the natural science that deals with the study of motion through space,time along with its related concepts which are energy and force
Fidelis
a submersible pump is dropped a borehole and hits the level of water at the bottom of the borehole 5 seconds later.determine the level of water in the borehole
what is power?
power P = Work done per second W/ t. It means the more power, the stronger machine
Sphere
e.g. heart Uses 2 W per beat.
Rohit
A spherica, concave shaving mirror has a radius of curvature of 32 cm .what is the magnification of a persons face. when it is 12cm to the left of the vertex of the mirror
did you solve?
Shii
1.75cm
Ridwan
my name is Abu m.konnek I am a student of a electrical engineer and I want you to help me
Abu
the magnification k = f/(f-d) with focus f = R/2 =16 cm; d =12 cm k = 16/4 =4
Sphere
what do we call velocity
Kings
A weather vane is some sort of directional arrow parallel to the ground that may rotate freely in a horizontal plane. A typical weather vane has a large cross-sectional area perpendicular to the direction the arrow is pointing, like a “One Way” street sign. The purpose of the weather vane is to indicate the direction of the wind. As wind blows pa
hi
Godfred
Godfred
If a prism is fully imersed in water then the ray of light will normally dispersed or their is any difference?
the same behavior thru the prism out or in water bud abbot
Ju
If this will experimented with a hollow(vaccum) prism in water then what will be result ?
Anurag