# 1.3 Accuracy, precision, and significant figures  (Page 3/12)

 Page 3 / 12

## Percent uncertainty

One method of expressing uncertainty is as a percent of the measured value. If a measurement $A$ is expressed with uncertainty, $\mathrm{\delta A}$ , the percent uncertainty    (%unc) is defined to be

$\text{}\text{% unc =}\frac{\mathrm{\delta A}}{A}×\text{100%}\text{}\text{.}$

## Calculating percent uncertainty: a bag of apples

A grocery store sells $\text{5-lb}$ bags of apples. You purchase four bags over the course of a month and weigh the apples each time. You obtain the following measurements:

• Week 1 weight: $\text{4.8 lb}$
• Week 2 weight: $\text{5.3 lb}$
• Week 3 weight: $\text{4.9 lb}$
• Week 4 weight: $\text{5.4 lb}$

You determine that the weight of the $\text{5-lb}$ bag has an uncertainty of $±0\text{.}4\phantom{\rule{0.25em}{0ex}}\text{lb}$ . What is the percent uncertainty of the bag’s weight?

Strategy

First, observe that the expected value of the bag’s weight, $A$ , is 5 lb. The uncertainty in this value, $\mathrm{\delta A}$ , is 0.4 lb. We can use the following equation to determine the percent uncertainty of the weight:

$\text{}\text{% unc =}\frac{\mathrm{\delta A}}{A}×\text{100%}\text{}\text{.}$

Solution

Plug the known values into the equation:

Discussion

We can conclude that the weight of the apple bag is $5\phantom{\rule{0.25em}{0ex}}\text{lb}±8\text{%}$ . Consider how this percent uncertainty would change if the bag of apples were half as heavy, but the uncertainty in the weight remained the same. Hint for future calculations: when calculating percent uncertainty, always remember that you must multiply the fraction by 100%. If you do not do this, you will have a decimal quantity, not a percent value.

## Uncertainties in calculations

There is an uncertainty in anything calculated from measured quantities. For example, the area of a floor calculated from measurements of its length and width has an uncertainty because the length and width have uncertainties. How big is the uncertainty in something you calculate by multiplication or division? If the measurements going into the calculation have small uncertainties (a few percent or less), then the method of adding percents    can be used for multiplication or division. This method says that the percent uncertainty in a quantity calculated by multiplication or division is the sum of the percent uncertainties in the items used to make the calculation . For example, if a floor has a length of $4\text{.}\text{00}\phantom{\rule{0.25em}{0ex}}\text{m}$ and a width of $3\text{.}\text{00}\phantom{\rule{0.25em}{0ex}}\text{m}$ , with uncertainties of $2%\text{}$ and $1%\text{}$ , respectively, then the area of the floor is $\text{12}\text{.}0\phantom{\rule{0.25em}{0ex}}{\text{m}}^{2}$ and has an uncertainty of $3%\text{}$ . (Expressed as an area this is $0\text{.}\text{36}\phantom{\rule{0.25em}{0ex}}{\text{m}}^{2}$ , which we round to $0\text{.}4\phantom{\rule{0.25em}{0ex}}{\text{m}}^{2}$ since the area of the floor is given to a tenth of a square meter.)

A high school track coach has just purchased a new stopwatch. The stopwatch manual states that the stopwatch has an uncertainty of $±0\text{.}\text{05}\phantom{\rule{0.25em}{0ex}}\mathrm{s}$ . Runners on the track coach’s team regularly clock 100-m sprints of $\text{11.49 s}$ to $\text{15.01 s}$ . At the school’s last track meet, the first-place sprinter came in at $\text{12}\text{.}\text{04 s}$ and the second-place sprinter came in at $\text{12}\text{.}\text{07 s}$ . Will the coach’s new stopwatch be helpful in timing the sprint team? Why or why not?

No, the uncertainty in the stopwatch is too great to effectively differentiate between the sprint times.

## Precision of measuring tools and significant figures

An important factor in the accuracy and precision of measurements involves the precision of the measuring tool. In general, a precise measuring tool is one that can measure values in very small increments. For example, a standard ruler can measure length to the nearest millimeter, while a caliper can measure length to the nearest 0.01 millimeter. The caliper is a more precise measuring tool because it can measure extremely small differences in length. The more precise the measuring tool, the more precise and accurate the measurements can be.

What is the difference between a principle and a law
the law is universally proved. The principal depends on certain conditions.
Dr
it states that mass of an element deposited during electrolysis is directly proportional to the quantity of electricity discharge
Olamide
what does the speedometer of a car measure ?
Car speedometer measures the rate of change of distance per unit time.
Moses
describe how a Michelson interferometer can be used to measure the index of refraction of a gas (including air)
using the law of reflection explain how powder takes the shine off a person's nose. what is the name of the optical effect?
WILLIAM
is higher resolution of microscope using red or blue light?.explain
WILLIAM
what is dimensional consistent
Mohammed
In engineering and science, dimensional analysis is the analysis of the relationships between different physical quantities by identifying their base quantities and units of measure and tracking these dimensions as calculations or comparisons are performed
syed
can sound wave in air be polarized?
Unlike transverse waves such as electromagnetic waves, longitudinal waves such as sound waves cannot be polarized. ... Since sound waves vibrate along their direction of propagation, they cannot be polarized
Astronomy
A proton moves at 7.50×107m/s perpendicular to a magnetic field. The field causes the proton to travel in a circular path of radius 0.800 m. What is the field strength?
derived dimenionsal formula
what is the difference between mass and weight
assume that a boy was born when his father was eighteen years.if the boy is thirteen years old now, how is his father in
Isru
31yrs
Olamide
what is airflow
derivative of first differential equation
why static friction is greater than Kinetic friction
draw magnetic field pattern for two wire carrying current in the same direction
An American traveler in New Zealand carries a transformer to convert New Zealand’s standard 240 V to 120 V so that she can use some small appliances on her trip.
What is the ratio of turns in the primary and secondary coils of her transformer?
nkombo
what is energy
Yusuf
How electric lines and equipotential surface are mutually perpendicular?
The potential difference between any two points on the surface is zero that implies È.Ŕ=0, Where R is the distance between two different points &E= Electric field intensity. From which we have cos þ =0, where þ is the angle between the directions of field and distance line, as E andR are zero. Thus
sorry..E and R are non zero...