<< Chapter < Page Chapter >> Page >

Similar observations can be made using a meter stick held at different locations along its length.

A pole vaulter is standing on the ground holding a pole with his two hands. The center of gravity of the pole is between the hands of the pole vaulter and is near the right hand of the man. The weight W is shown as an arrow downward toward center of gravity. The reactions F sub R and F sub L of the hands of the man are shown with vectors in upward direction. A free body diagram of the situation is shown on the top right side of the figure.
A pole vaulter holds a pole horizontally with both hands.

A pole vaulter is standing on the ground holding a pole with his two hands. The center of gravity of the pole is between the hands of the pole vaulter and is near the right hand of the man. The weight W is shown as an arrow downward toward center of gravity. The reactions F sub R and F sub L of the hands of the man are shown with vectors in upward direction. A free body diagram of the situation is shown on the top right side of the figure.
A pole vaulter is holding a pole horizontally with both hands. The center of gravity is near his right hand.

A pole vaulter is standing on the ground holding a pole from one side with his two hands. The centre of gravity of the pole is to the left of the pole vaulter. The weight W is shown as an arrow downward at center of gravity. The reaction F sub R is shown with a vector pointing downward from the man’s right hand and F sub L is shown with a vector in upward direction at the location of the man’s left hand. A free body diagram of the situation is shown on the top right side of the figure.
A pole vaulter is holding a pole horizontally with both hands. The center of gravity is to the left side of the vaulter.

If the pole vaulter holds the pole as shown in [link] , the situation is not as simple. The total force he exerts is still equal to the weight of the pole, but it is not evenly divided between his hands. (If F L = F R size 12{F rSub { size 8{L} } =F rSub { size 8{R} } } {} , then the torques about the cg would not be equal since the lever arms are different.) Logically, the right hand should support more weight, since it is closer to the cg. In fact, if the right hand is moved directly under the cg, it will support all the weight. This situation is exactly analogous to two people carrying a load; the one closer to the cg carries more of its weight. Finding the forces F L size 12{F rSub { size 8{L} } } {} and F R size 12{F rSub { size 8{R} } } {} is straightforward, as the next example shows.

If the pole vaulter holds the pole from near the end of the pole ( [link] ), the direction of the force applied by the right hand of the vaulter reverses its direction.

What force is needed to support a weight held near its cg?

For the situation shown in [link] , calculate: (a) F R size 12{F rSub { size 8{R} } } {} , the force exerted by the right hand, and (b) F L size 12{F rSub { size 8{L} } } {} , the force exerted by the left hand. The hands are 0.900 m apart, and the cg of the pole is 0.600 m from the left hand.

Strategy

[link] includes a free body diagram for the pole, the system of interest. There is not enough information to use the first condition for equilibrium (net F = 0 size 12{F=0} {} ), since two of the three forces are unknown and the hand forces cannot be assumed to be equal in this case. There is enough information to use the second condition for equilibrium (net τ = 0 ) size 12{ ital "net"`τ=0} {} if the pivot point is chosen to be at either hand, thereby making the torque from that hand zero. We choose to locate the pivot at the left hand in this part of the problem, to eliminate the torque from the left hand.

Solution for (a)

There are now only two nonzero torques, those from the gravitational force ( τ w size 12{τ rSub { size 8{W} } } {} ) and from the push or pull of the right hand ( τ R size 12{τ rSub { size 8{R} } } {} ). Stating the second condition in terms of clockwise and counterclockwise torques,

net τ cw = –net τ ccw . size 12{"net "τ rSub { size 8{"cw"} } ="net"τ rSub { size 8{"ccw"} } } {}

or the algebraic sum of the torques is zero.

Here this is

τ R = –τ w

since the weight of the pole creates a counterclockwise torque and the right hand counters with a clockwise torque. Using the definition of torque, τ = rF sin θ size 12{τ= ital "rF""sin"θ} {} , noting that θ = 90º size 12{θ} {} , and substituting known values, we obtain

0 . 900 m F R = 0 .600 m mg . size 12{ left (0 "." "900"" m" right ) left (F rSub { size 8{R} } right )= left (0 "." "600"" m" right ) left ( ital "mg" right )} {}

Thus,

F R = 0.667 5.00 kg 9.80 m/s 2 = 32.7 N.

Solution for (b)

The first condition for equilibrium is based on the free body diagram in the figure. This implies that by Newton’s second law:

F L + F R mg = 0 size 12{F rSub { size 8{L} } +F rSub { size 8{R} } - ital "mg"=0} {}

From this we can conclude:

F L + F R = w = mg size 12{F rSub { size 8{L} } +F rSub { size 8{R} } =w= ital "mg"} {}

Solving for F L size 12{F rSub { size 8{L} } } {} , we obtain

F L = mg F R = mg 32 . 7 N = 5.00 kg 9.80 m/s 2 32.7 N = 16.3 N alignl { stack { size 12{F rSub { size 8{L} } = ital "mg" - F rSub { size 8{R} } } {} #= ital "mg" - "32" "." 7 {} # =0 "." "333" ital "mg" {} #= left (0 "." "333" right ) left (5 "." "00"" kg" right ) left (9 "." "80"" m/s" rSup { size 8{2} } right ) {} # ="16" "." 3" N" {}} } {}

Discussion

F L size 12{F rSub { size 8{L} } } {} is seen to be exactly half of F R size 12{F rSub { size 8{R} } } {} , as we might have guessed, since F L is applied twice as far from the cg as F R .

Got questions? Get instant answers now!

If the pole vaulter holds the pole as he might at the start of a run, shown in [link] , the forces change again. Both are considerably greater, and one force reverses direction.

Take-home experiment

This is an experiment to perform while standing in a bus or a train. Stand facing sideways. How do you move your body to readjust the distribution of your mass as the bus accelerates and decelerates? Now stand facing forward. How do you move your body to readjust the distribution of your mass as the bus accelerates and decelerates? Why is it easier and safer to stand facing sideways rather than forward? Note: For your safety (and those around you), make sure you are holding onto something while you carry out this activity!

Phet explorations: balancing act

Play with objects on a teeter totter to learn about balance. Test what you've learned by trying the Balance Challenge game.

Balancing Act

Summary

  • Statics can be applied to a variety of situations, ranging from raising a drawbridge to bad posture and back strain. We have discussed the problem-solving strategies specifically useful for statics. Statics is a special case of Newton’s laws, both the general problem-solving strategies and the special strategies for Newton’s laws, discussed in Problem-Solving Strategies , still apply.

Conceptual questions

When visiting some countries, you may see a person balancing a load on the head. Explain why the center of mass of the load needs to be directly above the person’s neck vertebrae.

Got questions? Get instant answers now!

Problems&Exercises

To get up on the roof, a person (mass 70.0 kg) places a 6.00-m aluminum ladder (mass 10.0 kg) against the house on a concrete pad with the base of the ladder 2.00 m from the house. The ladder rests against a plastic rain gutter, which we can assume to be frictionless. The center of mass of the ladder is 2 m from the bottom. The person is standing 3 m from the bottom. What are the magnitudes of the forces on the ladder at the top and bottom?

Got questions? Get instant answers now!

In [link] , the cg of the pole held by the pole vaulter is 2.00 m from the left hand, and the hands are 0.700 m apart. Calculate the force exerted by (a) his right hand and (b) his left hand. (c) If each hand supports half the weight of the pole in [link] , show that the second condition for equilibrium (net τ = 0) is satisfied for a pivot other than the one located at the center of gravity of the pole. Explicitly show how you follow the steps in the Problem-Solving Strategy for static equilibrium described above.

Got questions? Get instant answers now!

Questions & Answers

what is physics
faith Reply
what are the basic of physics
faith
tree physical properties of heat
Bello Reply
tree is a type of organism that grows very tall and have a wood trunk and branches with leaves... how is that related to heat? what did you smoke man?
what are the uses of dimensional analysis
Racheal Reply
Dimensional Analysis. The study of relationships between physical quantities with the help of their dimensions and units of measurements is called dimensional analysis. We use dimensional analysis in order to convert a unit from one form to another.
Emmanuel
meaning of OE and making of the subscript nc
ferunmi Reply
can I ask a question
Negash
kinetic functional force
Moyagabo Reply
what is a principal wave?
Haider Reply
A wave the movement of particles on rest position transferring energy from one place to another
Gabche
not wave. i need to know principal wave or waves.
Haider
principle wave is a superposition of wave when two or more waves meet at a point , whose amplitude is the algebraic sum of the amplitude of the waves
arshad
kindly define principal wave not principle wave (principle of super position) if u can understand my question
Haider
what is a model?
Ella Reply
hi
Muhanned
why are electros emitted only when the frequency of the incident radiation is greater than a certain value
ANSELEM Reply
b/c u have to know that for emission of electron need specific amount of energy which are gain by electron for emission . if incident rays have that amount of energy electron can be emitted, otherwise no way.
Nazir
search photoelectric effect on Google
Nazir
what is ohm's law
Pamilerin Reply
states that electric current in a given metallic conductor is directly proportional to the potential difference applied between its end, provided that the temperature of the conductor and other physical factors such as length and cross-sectional area remains constant. mathematically V=IR
ANIEFIOK
hi
Gundala
A body travelling at a velocity of 30ms^-1 in a straight line is brought to rest by application of brakes. if it covers a distance of 100m during this period, find the retardation.
Pamilerin Reply
just use v^2-u^2=2as
Gundala
how often does electrolyte emits?
alhassan
just use +€^3.7°√π%-4¢•∆¥%
v^2-u^2=2as v=0,u=30,s=100 -30^2=2a*100 -900=200a a=-900/200 a=-4.5m/s^2
akinyemi
what is distribution of trade
Grace Reply
what's acceleration
Joshua Reply
The change in position of an object with respect to time
Mfizi
Acceleration is velocity all over time
Pamilerin
hi
Stephen
It's not It's the change of velocity relative to time
Laura
Velocity is the change of position relative to time
Laura
acceleration it is the rate of change in velocity with time
Stephen
acceleration is change in velocity per rate of time
Noara
what is ohm's law
Stephen
Ohm's law is related to resistance by which volatge is the multiplication of current and resistance ( U=RI)
Laura
acceleration is the rate of change. of displacement with time.
Radical
the rate of change of velocity is called acceleration
Asma
how i don understand
Willam Reply
how do I access the Multiple Choice Questions? the button never works and the essay one doesn't either
Savannah Reply
How do you determine the magnitude of force
Peace Reply
mass × acceleration OR Work done ÷ distance
Seema
Practice Key Terms 1

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask