<< Chapter < Page Chapter >> Page >
Photograph of the lunar rover on the Moon. The photo looks like it was taken at night with a powerful spotlight shining on the rover from the left: light reflects off the rover, the astronaut, and the Moon’s surface, but the sky is black. The shadow of the rover is very sharp.
This photograph of Apollo 17 Commander Eugene Cernan driving the lunar rover on the Moon in 1972 looks as though it was taken at night with a large spotlight. In fact, the light is coming from the Sun. Because the acceleration due to gravity on the Moon is so low (about 1/6 that of Earth), the Moon’s escape velocity is much smaller. As a result, gas molecules escape very easily from the Moon, leaving it with virtually no atmosphere. Even during the daytime, the sky is black because there is no gas to scatter sunlight. (credit: Harrison H. Schmitt/NASA)

If you consider a very small object such as a grain of pollen, in a gas, then the number of atoms and molecules striking its surface would also be relatively small. Would the grain of pollen experience any fluctuations in pressure due to statistical fluctuations in the number of gas atoms and molecules striking it in a given amount of time?

Yes. Such fluctuations actually occur for a body of any size in a gas, but since the numbers of atoms and molecules are immense for macroscopic bodies, the fluctuations are a tiny percentage of the number of collisions, and the averages spoken of in this section vary imperceptibly. Roughly speaking the fluctuations are proportional to the inverse square root of the number of collisions, so for small bodies they can become significant. This was actually observed in the 19th century for pollen grains in water, and is known as the Brownian effect.

Got questions? Get instant answers now!

Phet explorations: gas properties

Pump gas molecules into a box and see what happens as you change the volume, add or remove heat, change gravity, and more. Measure the temperature and pressure, and discover how the properties of the gas vary in relation to each other.

Gas Properties

Section summary

  • Kinetic theory is the atomistic description of gases as well as liquids and solids.
  • Kinetic theory models the properties of matter in terms of continuous random motion of atoms and molecules.
  • The ideal gas law can also be expressed as
    PV = 1 3 Nm v 2 ¯ , size 12{ ital "PV"= { {1} over {3} } ital "Nm" {overline {v rSup { size 8{2} } }} ,} {}
    where P size 12{P} {} is the pressure (average force per unit area), V size 12{V} {} is the volume of gas in the container, N size 12{N} {} is the number of molecules in the container, m size 12{m} {} is the mass of a molecule, and v 2 ¯ size 12{ {overline {v rSup { size 8{2} } }} } {} is the average of the molecular speed squared.
  • Thermal energy is defined to be the average translational kinetic energy KE ¯ size 12{ {overline {"KE"}} } {} of an atom or molecule.
  • The temperature of gases is proportional to the average translational kinetic energy of atoms and molecules.
    KE ¯ = 1 2 m v 2 ¯ = 3 2 kT size 12{ {overline {"KE"}} = { {1} over {2} } m {overline {v rSup { size 8{2} } }} = { {3} over {2} } ital "kT"} {}

    or

    v 2 ¯ = v rms = 3 kT m . size 12{ sqrt { {overline {v rSup { size 8{2} } }} } =v rSub { size 8{"rms"} } = sqrt { { {3 ital "kT"} over {m} } } "." } {}
  • The motion of individual molecules in a gas is random in magnitude and direction. However, a gas of many molecules has a predictable distribution of molecular speeds, known as the Maxwell-Boltzmann distribution .

Conceptual questions

How is momentum related to the pressure exerted by a gas? Explain on the atomic and molecular level, considering the behavior of atoms and molecules.

Got questions? Get instant answers now!

Problems&Exercises

Some incandescent light bulbs are filled with argon gas. What is v rms size 12{v rSub { size 8{"rms"} } } {} for argon atoms near the filament, assuming their temperature is 2500 K?

1 . 25 × 10 3 m/s size 12{ size 11{1 "." "25" times "10" rSup { size 8{3} } `"m/s"}} {}

Got questions? Get instant answers now!

Average atomic and molecular speeds ( v rms ) size 12{ \( v rSub { size 8{"rms"} } \) } {} are large, even at low temperatures. What is v rms size 12{v rSub { size 8{"rms"} } } {} for helium atoms at 5.00 K, just one degree above helium’s liquefaction temperature?

Got questions? Get instant answers now!

(a) What is the average kinetic energy in joules of hydrogen atoms on the 5500 º C size 12{"5500"°C} {} surface of the Sun? (b) What is the average kinetic energy of helium atoms in a region of the solar corona where the temperature is 6 . 00 × 10 5 K size 12{6 "." "00"´"10" rSup { size 8{5} } " K"} {} ?

(a) 1 . 20 × 10 19 J size 12{ size 11{1 "." "20" times "10" rSup { size 8{ - "19"} } `J}} {}

(b) 1 . 24 × 10 17 J size 12{ size 11{1 "." "24" times "10" rSup { size 8{ - "17"} } `J}} {}

Got questions? Get instant answers now!

The escape velocity of any object from Earth is 11.2 km/s. (a) Express this speed in m/s and km/h. (b) At what temperature would oxygen molecules (molecular mass is equal to 32.0 g/mol) have an average velocity v rms size 12{v rSub { size 8{"rms"} } } {} equal to Earth’s escape velocity of 11.1 km/s?

Got questions? Get instant answers now!

The escape velocity from the Moon is much smaller than from Earth and is only 2.38 km/s. At what temperature would hydrogen molecules (molecular mass is equal to 2.016 g/mol) have an average velocity v rms size 12{v rSub { size 8{"rms"} } } {} equal to the Moon’s escape velocity?

458 K size 12{ size 11{"458"`K}} {}

Got questions? Get instant answers now!

Nuclear fusion, the energy source of the Sun, hydrogen bombs, and fusion reactors, occurs much more readily when the average kinetic energy of the atoms is high—that is, at high temperatures. Suppose you want the atoms in your fusion experiment to have average kinetic energies of 6 . 40 × 10 14 J size 12{6 "." "40"´"10" rSup { size 8{ +- "14"} } " J"} {} . What temperature is needed?

Got questions? Get instant answers now!

Suppose that the average velocity ( v rms ) size 12{ \( v rSub { size 8{"rms"} } \) } {} of carbon dioxide molecules (molecular mass is equal to 44.0 g/mol) in a flame is found to be 1 . 05 × 10 5 m/s size 12{1 "." "05"´"10" rSup { size 8{5} } " m/s"} {} . What temperature does this represent?

1 . 95 × 10 7 K size 12{ size 11{1 "." "95" times "10" rSup { size 8{7} } `K}} {}

Got questions? Get instant answers now!

Hydrogen molecules (molecular mass is equal to 2.016 g/mol) have an average velocity v rms size 12{v rSub { size 8{"rms"} } } {} equal to 193 m/s. What is the temperature?

Got questions? Get instant answers now!

Much of the gas near the Sun is atomic hydrogen. Its temperature would have to be 1 . 5 × 10 7 K size 12{1 "." 5´"10" rSup { size 8{7} } " K"} {} for the average velocity v rms size 12{v rSub { size 8{"rms"} } } {} to equal the escape velocity from the Sun. What is that velocity?

6 . 09 × 10 5 m/s size 12{ size 11{6 "." "09" times "10" rSup { size 8{5} } `"m/s"}} {}

Got questions? Get instant answers now!

There are two important isotopes of uranium— 235 U size 12{ {} rSup { size 8{"235"} } U} {} and 238 U size 12{ {} rSup { size 8{"238"} } U} {} ; these isotopes are nearly identical chemically but have different atomic masses. Only 235 U size 12{ {} rSup { size 8{"235"} } U} {} is very useful in nuclear reactors. One of the techniques for separating them (gas diffusion) is based on the different average velocities v rms size 12{v rSub { size 8{"rms"} } } {} of uranium hexafluoride gas, UF 6 size 12{"UF" rSub { size 8{6} } } {} . (a) The molecular masses for 235 U size 12{ {} rSup { size 8{"235"} } U} {} UF 6 size 12{"UF" rSub { size 8{6} } } {} and 238 U size 12{ {} rSup { size 8{"238"} } U} {} UF 6 size 12{"UF" rSub { size 8{6} } } {} are 349.0 g/mol and 352.0 g/mol, respectively. What is the ratio of their average velocities? (b) At what temperature would their average velocities differ by 1.00 m/s? (c) Do your answers in this problem imply that this technique may be difficult?

Got questions? Get instant answers now!

Questions & Answers

Can you please help me with some questions
Janet Reply
I know this is unrelated to physics, but how do I get the MCQs and essay to work. they arent clickable.
Jake Reply
20cm3 of 1mol/dm3 solution of a monobasic acid HA and 20cm3 of 1mol/dm3 solution of NaOH are mixed in a calorimeter and a temperature rise of 274K is observed. If the heat capacity of the calorimeter is 160J/K, calculate the enthalpy of neutralization of the acid.(SHCw=4.2J/g/K) Formula. (ms*cs+C)*T
Lilian Reply
why is a body moving at a constant speed able to accelerate
Lilian Reply
20cm3 of 1mol/dm3 solution of a monobasic acid HA and 20cm3 of 1mol/dm3 solution of NaOH are mixed in a calorimeter and a temperature rise of 274K is observed. If the heat capacity of the calorimeter is 160J/K, calculate the enthalpy of neutralization of the acid.(SHCw=4.2J/g/K) Formula. (ms*cs+C)*T
Lilian
because it changes only direction and the speed is kept constant
Justice
Why is the sky blue...?
Star Reply
It's filtered light from the 2 forms of radiation emitted from the sun. It's mainly filtered UV rays. There's a theory titled Scatter Theory that covers this topic
Mike
A heating coil of resistance 30π is connected to a 240v supply for 5min to boil a quantity of water in a vessel of heat capacity 200jk. If the initial temperature of water is 20°c and it specific heat capacity is 4200jkgk calculate the mass of water in a vessel
fasawe Reply
A thin equi convex lens is placed on a horizontal plane mirror and a pin held 20 cm vertically above the lens concise in position with its own image the space between the undersurface of d lens and the mirror is filled with water (refractive index =1•33)and then to concise with d image d pin has to
Azummiri Reply
Be raised until its distance from d lens is 27cm find d radius of curvature
Azummiri
what happens when a nuclear bomb and atom bomb bomb explode add the same time near each other
FlAsH Reply
A monkey throws a coconut straight upwards from a coconut tree with a velocity of 10 ms-1. The coconut tree is 30 m high. Calculate the maximum height of the coconut from the top of the coconut tree? Can someone answer my question
Fatinizzah Reply
v2 =u2 - 2gh 02 =10x10 - 2x9.8xh h = 100 ÷ 19.6 answer = 30 - h.
Ramonyai
why is the north side is always referring to n side of magnetic
sam Reply
who is a nurse
Chilekwa Reply
A nurse is a person who takes care of the sick
Bukola
a nurse is also like an assistant to the doctor
Gadjawa
explain me wheatstone bridge
Malik Reply
good app
samuel
Wheatstone bridge is an instrument used to measure an unknown electrical resistance by balancing two legs of a bridge circuit, one leg of which includes the unknown component.
MUHD
Rockwell Software is Rockwell Automation’s "Retro Encabulator". Now, basically the only new principle involved is that instead of power being generated by the relative motion of conductors and fluxes, it’s produced by the modial interaction of magneto-reluctance and capacitive diractance. The origin
Chip
what refractive index
Adjah Reply
write a comprehensive note on primary colours
Harrison Reply
relationship between refractive index, angle of minimum deviation and angle of prism
Harrison
Who knows the formula for binding energy,and what each variable or notation stands for?
Agina Reply
Practice Key Terms 1

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask