<< Chapter < Page Chapter >> Page >
A beaker of water being heated over a flame. The beaker is shown at three different times. In the first, at twenty degrees C, a small bubble sits on the bottom of the beaker. In the second step, the water temperature is fifty degrees C and the bubble is larger, though still sitting on the bottom of the beaker. In the third step, the water temperature is one hundred degrees C. The bubble is larger and is rising toward the surface.
(a) An air bubble in water starts out saturated with water vapor at 20 º C size 12{"20"°C} {} . (b) As the temperature rises, water vapor enters the bubble because its vapor pressure increases. The bubble expands to keep its pressure at 1.00 atm. (c) At 100 º C size 12{"100"°C} {} , water vapor enters the bubble continuously because water’s vapor pressure exceeds its partial pressure in the bubble, which must be less than 1.00 atm. The bubble grows and rises to the surface.

Freeze drying is a process in which substances, such as foods, are dried by placing them in a vacuum chamber and lowering the atmospheric pressure around them. How does the lowered atmospheric pressure speed the drying process, and why does it cause the temperature of the food to drop?

Decreased the atmospheric pressure results in decreased partial pressure of water, hence a lower humidity. So evaporation of water from food, for example, will be enhanced. The molecules of water most likely to break away from the food will be those with the greatest velocities. Those remaining thus have a lower average velocity and a lower temperature. This can (and does) result in the freezing and drying of the food; hence the process is aptly named freeze drying.

Phet explorations: states of matter

Watch different types of molecules form a solid, liquid, or gas. Add or remove heat and watch the phase change. Change the temperature or volume of a container and see a pressure-temperature diagram respond in real time. Relate the interaction potential to the forces between molecules.

States of Matter: Basics

Section summary

  • Relative humidity is the fraction of water vapor in a gas compared to the saturation value.
  • The saturation vapor density can be determined from the vapor pressure for a given temperature.
  • Percent relative humidity is defined to be
    percent relative humidity = vapor density saturation vapor density × 100 . size 12{ size 11{"percent relative humidity"= { { size 11{"vapor density"}} over { size 11{"saturation vapor density"}} } times "100" "." }} {}
  • The dew point is the temperature at which air reaches 100% relative humidity.

Conceptual questions

Because humidity depends only on water’s vapor pressure and temperature, are the saturation vapor densities listed in [link] valid in an atmosphere of helium at a pressure of 1 . 01 × 10 5 N/m 2 size 12{1 "." "01"´"10" rSup { size 8{5} } " N/m" rSup { size 8{2} } } {} , rather than air? Are those values affected by altitude on Earth?

Why does a beaker of 40 . 0 º C size 12{"40" "." 0°C} {} water placed in a vacuum chamber start to boil as the chamber is evacuated (air is pumped out of the chamber)? At what pressure does the boiling begin? Would food cook any faster in such a beaker?

Why does rubbing alcohol evaporate much more rapidly than water at STP (standard temperature and pressure)?

Problems&Exercises

Dry air is 78.1% nitrogen. What is the partial pressure of nitrogen when the atmospheric pressure is 1 . 01 × 10 5 N/m 2 size 12{1 "." "01"´"10" rSup { size 8{5} } " N/m" rSup { size 8{2} } } {} ?

7 . 89 × 10 4 Pa size 12{ size 11{7 "." "89" times "10" rSup { size 8{4} } " Pa"}} {}

(a) What is the vapor pressure of water at 20 . 0 º C size 12{"20" "." 0°C} {} ? (b) What percentage of atmospheric pressure does this correspond to? (c) What percent of 20 . 0 º C size 12{"20" "." 0°C} {} air is water vapor if it has 100% relative humidity? (The density of dry air at 20 . 0 º C size 12{"20" "." 0°C} {} is 1 . 20 kg/m 3 size 12{1 "." "20"" kg/m" rSup { size 8{3} } } {} .)

Pressure cookers increase cooking speed by raising the boiling temperature of water above its value at atmospheric pressure. (a) What pressure is necessary to raise the boiling point to 120 . 0 º C size 12{"120" "." 0°C} {} ? (b) What gauge pressure does this correspond to?

(a) 1 . 99 × 10 5 Pa size 12{ size 11{1 "." "99" times "10" rSup { size 8{5} } " Pa"}} {}

(b) 0.97 atm

Questions & Answers

anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Mueller Reply
How we can toraidal magnetic field
Aditya Reply
How we can create polaidal magnetic field
Aditya
4
Mykayuh Reply
Because I'm writing a report and I would like to be really precise for the references
Gre Reply
where did you find the research and the first image (ECG and Blood pressure synchronized)? Thank you!!
Gre Reply
Practice Key Terms 4

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Physics 101. OpenStax CNX. Jan 07, 2013 Download for free at http://legacy.cnx.org/content/col11479/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics 101' conversation and receive update notifications?

Ask