<< Chapter < Page Chapter >> Page >

A graph of velocity vs. time of a ship coming into a harbor is shown below. (a) Describe the motion of the ship based on the graph. (b)What would a graph of the ship's acceleration look like?

Line graph of velocity versus time. The line has three legs. The first leg is flat. The second leg has a negative slope. The third leg also has a negative slope, but the slope is not as negative as the second leg.

(a) The ship moves at constant velocity and then begins to decelerate at a constant rate. At some point, its deceleration rate decreases. It maintains this lower deceleration rate until it stops moving.

(b) A graph of acceleration vs. time would show zero acceleration in the first leg, large and constant negative acceleration in the second leg, and constant negative acceleration.

A line graph of acceleration versus time. There are three legs of the graph. All three legs are flat and straight. The first leg shows constant acceleration of 0. The second leg shows a constant negative acceleration. The third leg shows a constant negative acceleration that is not as negative as the second leg.
Got questions? Get instant answers now!

Section summary

  • Graphs of motion can be used to analyze motion.
  • Graphical solutions yield identical solutions to mathematical methods for deriving motion equations.
  • The slope of a graph of displacement x size 12{x} {} vs. time t size 12{t} {} is velocity v size 12{v} {} .
  • The slope of a graph of velocity v size 12{v} {} vs. time t size 12{t} {} graph is acceleration a size 12{a} {} .
  • Average velocity, instantaneous velocity, and acceleration can all be obtained by analyzing graphs.

Conceptual questions

(a) Explain how you can use the graph of position versus time in [link] to describe the change in velocity over time. Identify (b) the time ( t a , t b , t c , t d , or t e ) at which the instantaneous velocity is greatest, (c) the time at which it is zero, and (d) the time at which it is negative.

Line graph of position versus time with 5 points labeled: a, b, c, d, and e. The slope of the line changes. It begins with a positive slope that decreases over time until around point d, where it is flat. It then has a slightly negative slope.
Got questions? Get instant answers now!

(a) Sketch a graph of velocity versus time corresponding to the graph of displacement versus time given in [link] . (b) Identify the time or times ( t a , t b , t c , etc.) at which the instantaneous velocity is greatest. (c) At which times is it zero? (d) At which times is it negative?

Line graph of position over time with 12 points labeled a through l. Line has a negative slope from a to c, where it turns and has a positive slope till point e. It turns again and has a negative slope till point g. The slope then increases again till l, where it flattens out.
Got questions? Get instant answers now!

(a) Explain how you can determine the acceleration over time from a velocity versus time graph such as the one in [link] . (b) Based on the graph, how does acceleration change over time?

Line graph of velocity over time with two points labeled. Point P is at v 1 t 1. Point Q is at v 2 t 2. The line has a positive slope that increases over time.
Got questions? Get instant answers now!

(a) Sketch a graph of acceleration versus time corresponding to the graph of velocity versus time given in [link] . (b) Identify the time or times ( t a , t b , t c , etc.) at which the acceleration is greatest. (c) At which times is it zero? (d) At which times is it negative?

Line graph of velocity over time with 12 points labeled a through l. The line has a positive slope from a at the origin to d where it slopes downward to e, and then back upward to h. It then slopes back down to point l at v equals 0.

Got questions? Get instant answers now!

Consider the velocity vs. time graph of a person in an elevator shown in [link] . Suppose the elevator is initially at rest. It then accelerates for 3 seconds, maintains that velocity for 15 seconds, then decelerates for 5 seconds until it stops. The acceleration for the entire trip is not constant so we cannot use the equations of motion from Motion Equations for Constant Acceleration in One Dimension for the complete trip. (We could, however, use them in the three individual sections where acceleration is a constant.) Sketch graphs of (a) position vs. time and (b) acceleration vs. time for this trip.

Line graph of velocity versus time. Line begins at the origin and has a positive slope until it reaches 3 meters per second at 3 seconds. The slope is then zero until 18 seconds, where it becomes negative until the line reaches a velocity of 0 at 23 seconds.
Got questions? Get instant answers now!

A cylinder is given a push and then rolls up an inclined plane. If the origin is the starting point, sketch the position, velocity, and acceleration of the cylinder vs. time as it goes up and then down the plane.

Got questions? Get instant answers now!

Problems&Exercises

Note: There is always uncertainty in numbers taken from graphs. If your answers differ from expected values, examine them to see if they are within data extraction uncertainties estimated by you.

(a) By taking the slope of the curve in [link] , verify that the velocity of the jet car is 115 m/s at t = 20 s size 12{t="20"`s} {} . (b) By taking the slope of the curve at any point in [link] , verify that the jet car's acceleration is 5 . 0 m/s 2 size 12{5 "." "0 m/s" rSup { size 8{2} } } {} .

Line graph of position over time. Line has positive slope that increases over time.
Line graph of velocity versus time. Line is straight with a positive slope.

(a) 115 m/s size 12{"115 m/s"} {}

(b) 5 . 0 m/s 2 size 12{5 "." "0 m/s" rSup { size 8{2} } } {}

Got questions? Get instant answers now!

Using approximate values, calculate the slope of the curve in [link] to verify that the velocity at t = 10.0 s size 12{t="10"`s} {} is 0.208 m/s. Assume all values are known to 3 significant figures.

Line graph of position versus time. Line is straight with a positive slope.
Got questions? Get instant answers now!

Using approximate values, calculate the slope of the curve in [link] to verify that the velocity at t = 30.0 s is 0.238 m/s. Assume all values are known to 3 significant figures.

v = ( 11.7 6.95 ) × 10 3 m ( 40 . 0 – 20 .0 ) s = 238 m/s

Got questions? Get instant answers now!

By taking the slope of the curve in [link] , verify that the acceleration is approximately 3 . 2 m /s 2 at t = 10 s size 12{t="10"`s} {} .

Line graph of velocity versus time. Line has a positive slope that decreases over time until the line flattens out.
Got questions? Get instant answers now!

Construct the displacement graph for the subway shuttle train as shown in [link] (a). Your graph should show the position of the train, in kilometers, from t = 0 to 20 s. You will need to use the information on acceleration and velocity given in the examples for this figure.

Line graph of position versus time. Line begins with a slight positive slope. It then kinks to a much greater positive slope.
Got questions? Get instant answers now!

(a) Take the slope of the curve in [link] to find the jogger's velocity at t = 2 . 5 s size 12{t=2 "." 5`s} {} . (b) Repeat at 7.5 s. These values must be consistent with the graph in [link] .

Line graph of position over time. Line begins sloping upward, then kinks back down, then kinks back upward again.
Line graph of velocity over time. Line begins with a positive slope, then kinks downward with a negative slope, then kinks back upward again. It kinks back down again slightly, then back up again, and ends with a slightly less positive slope.
Got questions? Get instant answers now!

A graph of v t is shown for a world-class track sprinter in a 100-m race. (See [link] ). (a) What is his average velocity for the first 4 s? (b) What is his instantaneous velocity at t = 5 s ? (c) What is his average acceleration between 0 and 4 s? (d) What is his time for the race?

Line graph of velocity versus time. The line has two legs. The first has a constant positive slope. The second is flat, with a slope of 0.

(a) 6 m/s

(b) 12 m/s

(c) 3 m/s 2 size 12{"3 m/s" rSup { size 8{2} } } {}

(d) 10 s

Got questions? Get instant answers now!

[link] shows the displacement graph for a particle for 5 s. Draw the corresponding velocity and acceleration graphs.

Line graph of position versus time. The line has 4 legs. The first leg has a positive slope. The second leg has a negative slope. The third has a slope of 0. The fourth has a positive slope.
Got questions? Get instant answers now!

Questions & Answers

what is angular velocity
Obaapa Reply
Why does earth exert only a tiny downward pull?
Mya Reply
hello
Islam
Why is light bright?
Abraham Reply
what is radioactive element
Attah Reply
an 8.0 capacitor is connected by to the terminals of 60Hz whoes rms voltage is 150v. a.find the capacity reactance and rms to the circuit
Aisha Reply
thanks so much. i undersooth well
Valdes Reply
what is physics
Nwafor Reply
is the study of matter in relation to energy
Kintu
a submersible pump is dropped a borehole and hits the level of water at the bottom of the borehole 5 seconds later.determine the level of water in the borehole
Obrian Reply
what is power?
aron Reply
power P = Work done per second W/ t. It means the more power, the stronger machine
Sphere
e.g. heart Uses 2 W per beat.
Rohit
A spherica, concave shaving mirror has a radius of curvature of 32 cm .what is the magnification of a persons face. when it is 12cm to the left of the vertex of the mirror
Alona Reply
did you solve?
Shii
1.75cm
Ridwan
my name is Abu m.konnek I am a student of a electrical engineer and I want you to help me
Abu
the magnification k = f/(f-d) with focus f = R/2 =16 cm; d =12 cm k = 16/4 =4
Sphere
what do we call velocity
Kings
A weather vane is some sort of directional arrow parallel to the ground that may rotate freely in a horizontal plane. A typical weather vane has a large cross-sectional area perpendicular to the direction the arrow is pointing, like a “One Way” street sign. The purpose of the weather vane is to indicate the direction of the wind. As wind blows pa
Kavita Reply
hi
Godfred
what about the wind vane
Godfred
If a prism is fully imersed in water then the ray of light will normally dispersed or their is any difference?
Anurag Reply
the same behavior thru the prism out or in water bud abbot
Ju
If this will experimented with a hollow(vaccum) prism in water then what will be result ?
Anurag
What was the previous far point of a patient who had laser correction that reduced the power of her eye by 7.00 D, producing a normal distant vision power of 50.0 D for her?
Jaydie Reply
What is the far point of a person whose eyes have a relaxed power of 50.5 D?
Jaydie
What is the far point of a person whose eyes have a relaxed power of 50.5 D?
Jaydie
A young woman with normal distant vision has a 10.0% ability to accommodate (that is, increase) the power of her eyes. What is the closest object she can see clearly?
Jaydie
29/20 ? maybes
Ju
In what ways does physics affect the society both positively or negatively
Princewill Reply
how can I read physics...am finding it difficult to understand...pls help
rerry Reply
try to read several books on phy don't just rely one. some authors explain better than other.
Ju
And don't forget to check out YouTube videos on the subject. Videos offer a different visual way to learn easier.
Ju
hope that helps
Ju
Practice Key Terms 4

Get the best College physics for ap... course in your pocket!





Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask