<< Chapter < Page Chapter >> Page >
The schematic shows a rectangular object on a background material. Two oscillatory waves go from left to right across the image. At the left of the image, the waves have the same wavelength and are in phase. The lower wave goes through the object, where its wavelength becomes significantly shorter. To the right of the object the waves again have the same wavelength but they are now almost completely out of phase.
Light rays passing through a sample under a microscope will emerge with different phases depending on their paths. The object shown has a greater index of refraction than the background, and so the wavelength decreases as the ray passes through it. Superimposing these rays produces interference that varies with path, enhancing contrast between the object and background.

Interference microscopes enhance contrast between objects and background by superimposing a reference beam of light upon the light emerging from the sample. Since light from the background and objects differ in phase, there will be different amounts of constructive and destructive interference, producing the desired contrast in final intensity. [link] shows schematically how this is done. Parallel rays of light from a source are split into two beams by a half-silvered mirror. These beams are called the object and reference beams. Each beam passes through identical optical elements, except that the object beam passes through the object we wish to observe microscopically. The light beams are recombined by another half-silvered mirror and interfere. Since the light rays passing through different parts of the object have different phases, interference will be significantly different and, hence, have greater contrast between them.

The schematic shows an optical setup for an interference microscope. A light source produces a beam of light that is split into two beams by a beam splitter, which is a half silvered mirror. The beams are steered around the opposite side of a square and recombine at the corner diagonally opposite the beam splitter. The object being analyzed is placed in one arm so that the beam in that arm goes through the object.
An interference microscope utilizes interference between the reference and object beam to enhance contrast. The two beams are split by a half-silvered mirror; the object beam is sent through the object, and the reference beam is sent through otherwise identical optical elements. The beams are recombined by another half-silvered mirror, and the interference depends on the various phases emerging from different parts of the object, enhancing contrast.

Another type of microscope utilizing wave interference and differences in phases to enhance contrast is called the phase-contrast microscope    . While its principle is the same as the interference microscope, the phase-contrast microscope is simpler to use and construct. Its impact (and the principle upon which it is based) was so important that its developer, the Dutch physicist Frits Zernike (1888–1966), was awarded the Nobel Prize in 1953. [link] shows the basic construction of a phase-contrast microscope. Phase differences between light passing through the object and background are produced by passing the rays through different parts of a phase plate (so called because it shifts the phase of the light passing through it). These two light rays are superimposed in the image plane, producing contrast due to their interference.

The schematic shows two beams of light going up from the bottom of the image and crossing at a point labeled object. After passing through the object, the beams diverge and then are focused by a convex lens. The light passes through a plate called the phase plate, and the beams then focus on the image plane. The background light diverges after passing through the phase plate so that it spreads away from the primary light beam on the image plane.
Simplified construction of a phase-contrast microscope. Phase differences between light passing through the object and background are produced by passing the rays through different parts of a phase plate. The light rays are superimposed in the image plane, producing contrast due to their interference.

A polarization microscope    also enhances contrast by utilizing a wave characteristic of light. Polarization microscopes are useful for objects that are optically active or birefringent, particularly if those characteristics vary from place to place in the object. Polarized light is sent through the object and then observed through a polarizing filter that is perpendicular to the original polarization direction. Nearly transparent objects can then appear with strong color and in high contrast. Many polarization effects are wavelength dependent, producing color in the processed image. Contrast results from the action of the polarizing filter in passing only components parallel to its axis.

Apart from the UV microscope, the variations of microscopy discussed so far in this section are available as attachments to fairly standard microscopes or as slight variations. The next level of sophistication is provided by commercial confocal microscopes    , which use the extended focal region shown in [link] (b) to obtain three-dimensional images rather than two-dimensional images. Here, only a single plane or region of focus is identified; out-of-focus regions above and below this plane are subtracted out by a computer so the image quality is much better. This type of microscope makes use of fluorescence, where a laser provides the excitation light. Laser light passing through a tiny aperture called a pinhole forms an extended focal region within the specimen. The reflected light passes through the objective lens to a second pinhole and the photomultiplier detector, see [link] . The second pinhole is the key here and serves to block much of the light from points that are not at the focal point of the objective lens. The pinhole is conjugate (coupled) to the focal point of the lens. The second pinhole and detector are scanned, allowing reflected light from a small region or section of the extended focal region to be imaged at any one time. The out-of-focus light is excluded. Each image is stored in a computer, and a full scanned image is generated in a short time. Live cell processes can also be imaged at adequate scanning speeds allowing the imaging of three-dimensional microscopic movement. Confocal microscopy enhances images over conventional optical microscopy, especially for thicker specimens, and so has become quite popular.

The next level of sophistication is provided by microscopes attached to instruments that isolate and detect only a small wavelength band of light—monochromators and spectral analyzers. Here, the monochromatic light from a laser is scattered from the specimen. This scattered light shifts up or down as it excites particular energy levels in the sample. The uniqueness of the observed scattered light can give detailed information about the chemical composition of a given spot on the sample with high contrast—like molecular fingerprints. Applications are in materials science, nanotechnology, and the biomedical field. Fine details in biochemical processes over time can even be detected. The ultimate in microscopy is the electron microscope—to be discussed later. Research is being conducted into the development of new prototype microscopes that can become commercially available, providing better diagnostic and research capacities.

Schematic of a confocal microscope. There is a sample at the bottom, a pinhole at the top, and a pinhole at the right side. The sample is a horizontal rectangle that is rather thick in the vertical direction. A green laser beam coming from the right is focused through the right pinhole, then reflects downward off of a dichroic mirror. It is then collected by a horizontal objective lens and focused onto the sample. The focus is not a point, but an extended zone where the beam diameter is minimal. Two solid red rays leave the focal plane of the objective lens and diverge upward. This plane is inside the sample and is labeled object in focal plane. These rays pass through the objective lens and begin to converge. After passing through the dichroic mirror, they continue upward and are focused through the top pinhole. After passing through this pinhole, these rays enter a detector. Two dashed red rays leave the sample at a point slightly above the focal plane, which is labeled object not in focal plane. These rays follow similar paths as the solid red rays, but they do not focus on the pinhole and so are blocked and do not reach the detector.
A confocal microscope provides three-dimensional images using pinholes and the extended depth of focus as described by wave optics. The right pinhole illuminates a tiny region of the sample in the focal plane. In-focus light rays from this tiny region pass through the dichroic mirror and the second pinhole to a detector and a computer. Out-of-focus light rays are blocked. The pinhole is scanned sideways to form an image of the entire focal plane. The pinhole can then be scanned up and down to gather images from different focal planes. The result is a three-dimensional image of the specimen.

Section summary

  • To improve microscope images, various techniques utilizing the wave characteristics of light have been developed. Many of these enhance contrast with interference effects.

Conceptual questions

Explain how microscopes can use wave optics to improve contrast and why this is important.

Got questions? Get instant answers now!

A bright white light under water is collimated and directed upon a prism. What range of colors does one see emerging?

Got questions? Get instant answers now!

Questions & Answers

definition for wave?
Doc Reply
A disturbance that travel from one medium to another and without causing permanent change to its displacement
Fagbenro
In physics, a wave is a disturbance that transfers energy through matter or space, with little or no associated mass transport (Mass transfer). ... There are two main types ofwaves: mechanical and electromagnetic. Mechanicalwaves propagate through a physical matter, whose substance is being deformed
Devansh
K
Manyo
what is physic
zalmia Reply
please gave me answar
zalmia
Study of matter and energy
Fagbenro
physics is the science of matter and energy and their interactions
Acquah
physics is the technology behind air and matter
Doc
Okay
William
hi sir
Bala
how easy to understanding physics sir
Bala
Easy to learn
William
31. Calculate the initial (from rest) acceleration of a proton in a 5.00×106 N/C electric field (such as created by a research Van de Graaff). Explicitly show how you follow the steps in the Problem-Solving Strategy for electrostatics.
Catina Reply
what friction
Wisdom Reply
question on friction
Wisdom
the rubbing of one object or surface against another.
author
momentum is the product of mass and it's velocity.
Algayawi
what are bioelements?
Edina
Friction is a force that exist between two objects in contact. e.g. friction between road and car tires.
Eklu
With regards to a shielded cable, is there an induced current on the shield when the center conductor is carrying an AC Current? What is the formula?
John Reply
what is phenomena
remilekun Reply
no idea
Awoke
its phenomenon, an observable fact.
author
Mujy achy marks hasil krny k leay kesy tayari krni ho ge?plz help me I'M sooo woried
Imran Reply
konsi university m ho and konsa course h
Mohit
what is force
Chukwuemeka Reply
Force is the cause and momentum is its effect.
Salman
A force is a pull or a push on an object, causing an object to move or a moving object to stop.
Eklu
Find the velocity that make one full oscillation in 10 seconds and also makes 1.7meters in the same time
Prince Reply
yes
Rafael
OK
Oluwaseun
17m/s
Eklu
17m/s
Gabriel
0.17
Devansh
17m/s
Harrison
how did you solve it
Acquah
t=10s a=1.7m v=? u=0 but v=u+at but u=0 v=at 1.7×10=17 v=17m/s that's how I solved it.
Eklu
kk
Acquah
How is a=1.7m?
El
a is an acceleration
El
eklu..... I respect u....
Doc
its relating to time and oscillation made.
Eklu
You mean A as an amplitude?
El
ok
Emmanuel
what is voltmeter
Jeremiah Reply
A voltmeter is a device use in measuring electric potential in a volt.
Ahmad
Find out the equation of a simple harmonic progressive wave that have 0.2m with a frequency of 550hertz.If the wave moves along a positive x axis with the speed of 330m/s
Joseph Reply
is there a summary for this whole physics book
Fortune Reply
I don't think there is a summary for this physics
Adeyemi
nope
Idy
I want a guide book on Ray optics
Sharma
Where to get?
Sharma
ok
Jude
hi
Tina
pleasant evening
Idy
evening dr
Betman
what the difference between laws and principles
Mary Reply
principle are like rules... it can change BUT LAW IS LAW... confirmed theory
Fortune
principle is a guiding belief Law is authority or instruction
Faruk
Hello want to study physics but it seems so difficult
Joshua Reply
Yes
Aifuwa
I read it but when I try to solve questions it seems difficult
Aifuwa
Jerry where are you from
Joshua
can i study some problem on motion and projection motion
Weamie
hello pls am new here so i want someone to highlight me on this "application of expansion/contraction
Awoke
want 2 do is just dat u rest for some minute,then u go back to the simple one nd one u understand and then go back to d difficult one,u will now understand it better.
rebecca
yess
rebecca
what of mine
Awoke
yess
rebecca
ok
Awoke
iam new here
Mohamed
u are welcome
Awoke
hello am new. am I welcome
Miracle
yes you are😁
clifford
we can all learn and help each other
Osei
yeah you are right
Neyaz
so we can all share our ideas on a certain topic
Osei
sure
clifford
in beginning all subjects are difficult need to work hard
Mohammed
hi guyz
Lamin
How can I understand physics
Thankgod
Where will I start from
Thankgod
(fundamentals of physics) start there
clifford
OK thanks
Thankgod
Hello, im college now, engineering, 1 years, what book of physics i must use, to be understand easily?
Megryan
try physics for scientist and engineers/ cutnell and Johnson
clifford
Okey po!
Megryan
Is not difficult if u really want to learn
Gabriel
hello guys
Okotie
i love physics but it is difficult for me to solve
Okotie
I just saw d group on my physics app
Charles
xame here
Kpogho
pls guys i need help on my physics understanding and i know that if we share ideas together we can make this world a better place using more advance level of technology cos we are the new generation and we need to make technology more advance and introduced to under develop countries.
Sammy
i think we need to b focus when learning or studying physics,making research on topics or words that seems difficult , putting them into practice or analyzing the idea to our day to day activities and introducing it to other.
Sammy
i just think that is a way we can improve and highlighting our selves on physics so that those who want to learn will learn and those who want to know will know that there is still some generation scientists who can improve technology today.
Sammy
i don't think if what i sed make sense but i still think it those
Sammy
physics is a course that goes like this, if you don't put in the work it doesn't matter how much help you get, you will never truly understand
clifford
what is this group for please?
Charles
if u ask people or internet for understanding u will get d idea of how physics play it's game on every topic
Sammy
hellow guys am persuing science laboratory technology which physics book should I use so that I understand the concepts of physics well
Nasike
yh me too
Ozuruonye
essential physics or new school physics is good but u can also download MCQs physics handbooks
Sammy
just for beginners
Sammy
is true
Ali
hello guys
Okotie
please who can teach me physics
Okotie
Ok
Zazy
i can
Sammy
hi
divine
pls am new here and I really want someone to teach me physics
divine
explanations on harmonic motion
Tumwiine Reply
Practice Key Terms 6

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask