# 29.2 The photoelectric effect  (Page 4/8)

 Page 4 / 8

## Phet explorations: photoelectric effect

See how light knocks electrons off a metal target, and recreate the experiment that spawned the field of quantum mechanics.

## Section summary

• The photoelectric effect is the process in which EM radiation ejects electrons from a material.
• Einstein proposed photons to be quanta of EM radiation having energy $E=\text{hf}$ , where $f$ is the frequency of the radiation.
• All EM radiation is composed of photons. As Einstein explained, all characteristics of the photoelectric effect are due to the interaction of individual photons with individual electrons.
• The maximum kinetic energy ${\text{KE}}_{e}$ of ejected electrons (photoelectrons) is given by ${\text{KE}}_{e}=\text{hf}\text{– BE}$ , where $\text{hf}$ is the photon energy and BE is the binding energy (or work function) of the electron to the particular material.

## Conceptual questions

Is visible light the only type of EM radiation that can cause the photoelectric effect?

Which aspects of the photoelectric effect cannot be explained without photons? Which can be explained without photons? Are the latter inconsistent with the existence of photons?

Is the photoelectric effect a direct consequence of the wave character of EM radiation or of the particle character of EM radiation? Explain briefly.

Insulators (nonmetals) have a higher BE than metals, and it is more difficult for photons to eject electrons from insulators. Discuss how this relates to the free charges in metals that make them good conductors.

If you pick up and shake a piece of metal that has electrons in it free to move as a current, no electrons fall out. Yet if you heat the metal, electrons can be boiled off. Explain both of these facts as they relate to the amount and distribution of energy involved with shaking the object as compared with heating it.

## Problems&Exercises

What is the longest-wavelength EM radiation that can eject a photoelectron from silver, given that the binding energy is 4.73 eV? Is this in the visible range?

263 nm

Find the longest-wavelength photon that can eject an electron from potassium, given that the binding energy is 2.24 eV. Is this visible EM radiation?

What is the binding energy in eV of electrons in magnesium, if the longest-wavelength photon that can eject electrons is 337 nm?

3.69 eV

Calculate the binding energy in eV of electrons in aluminum, if the longest-wavelength photon that can eject them is 304 nm.

What is the maximum kinetic energy in eV of electrons ejected from sodium metal by 450-nm EM radiation, given that the binding energy is 2.28 eV?

0.483 eV

UV radiation having a wavelength of 120 nm falls on gold metal, to which electrons are bound by 4.82 eV. What is the maximum kinetic energy of the ejected photoelectrons?

Violet light of wavelength 400 nm ejects electrons with a maximum kinetic energy of 0.860 eV from sodium metal. What is the binding energy of electrons to sodium metal?

2.25 eV

UV radiation having a 300-nm wavelength falls on uranium metal, ejecting 0.500-eV electrons. What is the binding energy of electrons to uranium metal?

What is the wavelength of EM radiation that ejects 2.00-eV electrons from calcium metal, given that the binding energy is 2.71 eV? What type of EM radiation is this?

(a) 264 nm

(b) Ultraviolet

Find the wavelength of photons that eject 0.100-eV electrons from potassium, given that the binding energy is 2.24 eV. Are these photons visible?

What is the maximum velocity of electrons ejected from a material by 80-nm photons, if they are bound to the material by 4.73 eV?

$1.95×{\text{10}}^{6}\phantom{\rule{0.25em}{0ex}}\text{m/s}$

Photoelectrons from a material with a binding energy of 2.71 eV are ejected by 420-nm photons. Once ejected, how long does it take these electrons to travel 2.50 cm to a detection device?

A laser with a power output of 2.00 mW at a wavelength of 400 nm is projected onto calcium metal. (a) How many electrons per second are ejected? (b) What power is carried away by the electrons, given that the binding energy is 2.71 eV?

(a) $4.02×{\text{10}}^{\text{15}}\phantom{\rule{0.25em}{0ex}}\text{/s}$

(b) 0.256 mW

(a) Calculate the number of photoelectrons per second ejected from a 1.00-mm 2 area of sodium metal by 500-nm EM radiation having an intensity of $1\text{.}{\text{30 kW/m}}^{2}$ (the intensity of sunlight above the Earth’s atmosphere). (b) Given that the binding energy is 2.28 eV, what power is carried away by the electrons? (c) The electrons carry away less power than brought in by the photons. Where does the other power go? How can it be recovered?

Unreasonable Results

Red light having a wavelength of 700 nm is projected onto magnesium metal to which electrons are bound by 3.68 eV. (a) Use ${\text{KE}}_{e}=\text{hf}–\text{BE}$ to calculate the kinetic energy of the ejected electrons. (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?

(a) $–1.90 eV$

(b) Negative kinetic energy

(c) That the electrons would be knocked free.

Unreasonable Results

(a) What is the binding energy of electrons to a material from which 4.00-eV electrons are ejected by 400-nm EM radiation? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?

Calculate the work done by an 85.0-kg man who pushes a crate 4.00 m up along a ramp that makes an angle of 20.0º20.0º with the horizontal. (See [link] .) He exerts a force of 500 N on the crate parallel to the ramp and moves at a constant speed. Be certain to include the work he does on the crate an
What is thermal heat all about
why uniform circular motion is called a periodic motion?.
when a train start from A & it returns at same station A . what is its acceleration?
what is distance of A to B of the stations and what is the time taken to reach B from A
BELLO
the information provided is not enough
aliyu
Hmmmm maybe the question is logical
yusuf
where are the parameters for calculation
HENRY
there is enough information to calculate an AVERAGE acceleration
Kwok
mistake, there is enough information to calculate an average velocity
Kwok
~\
Abel
what is the unit of momentum
Abel
wha are the types of radioactivity ?
what are the types of radioactivity
Worku
what is static friction
It is the opposite of kinetic friction
Mark
static fiction is friction between two surfaces in contact an none of sliding over on another, while Kinetic friction is friction between sliding surfaces in contact.
MINDERIUM
I don't get it,if it's static then there will be no friction.
author
It means that static friction is that friction that most be overcome before a body can move
kingsley
static friction is a force that keeps an object from moving, and it's the opposite of kinetic friction.
author
It is a force a body must overcome in order for the body to move.
Eboh
If a particle accelerator explodes what happens
Eboh
why we see the edge effect in case of the field lines of capacitor?
Arnab
what is wave
what is force
Muhammed
force is something which is responsible for the object to change its position
MINDERIUM
more technically it is the product of mass of an object and Acceleration produced in it
MINDERIUM
wave is disturbance in any medium
iqra
energy is distributed in any medium through particles of medium.
iqra
If a particle accelerator explodes what happens
we have to first figure out .... wats a particle accelerator first
Teh
What is surface tension
The resistive force of surface.
iqra
Who can tutor me on simple harmonic motion
on both a string and peldulum?
Anya
spring*
Anya
Yea
yusuf
Do you have a chit-chat contact
yusuf
I dont have social media but i do have an email?
Anya
Which is
yusuf
Where are you chatting from
yusuf
I don't understand the basics of this group
Jimmy
teach him SHM init
Anya
Simple harmonic motion
yusuf
how.an.equipotential.line is two dimension and equipotential surface is three dimension ?
definition of mass of conversion
Force equals mass time acceleration. Weight is a force and it can replace force in the equation. The acceleration would be gravity, which is an acceleration. To change from weight to mass divide by gravity (9.8 m/s^2).
Marisa
how many subject is in physics
the write question should be " How many Topics are in O- Level Physics, or other branches of physics.
effiom
how many topic are in physics
Praise
Praise what level are you
yusuf
If u are doing a levels in your first year you do AS topics therefore you do 5 big topic i.e particles radiation, waves and optics, mechanics,materials, electricity. After that you do A level topics like Specific Harmonic motion circular motion astrophysics depends really
Anya
Yeah basics of physics prin8
yusuf
Heat nd Co for a level
yusuf
yh I need someone to explain something im tryna solve . I'll send the question if u down for it
a ripple tank experiment a vibrating plane is used to generate wrinkles in the water .if the distance between two successive point is 3.5cm and the wave travel a distance of 31.5cm find the frequency of the vibration
Tamdy
hallow
Boniface
Boniface
the range of objects and phenomena studied in physics is
Boniface