<< Chapter < Page Chapter >> Page >

Another radiation detection method records light produced when radiation interacts with materials. The energy of the radiation is sufficient to excite atoms in a material that may fluoresce, such as the phosphor used by Rutherford’s group. Materials called scintillators    use a more complex collaborative process to convert radiation energy into light. Scintillators may be liquid or solid, and they can be very efficient. Their light output can provide information about the energy, charge, and type of radiation. Scintillator light flashes are very brief in duration, enabling the detection of a huge number of particles in short periods of time. Scintillator detectors are used in a variety of research and diagnostic applications. Among these are the detection by satellite-mounted equipment of the radiation from distant galaxies, the analysis of radiation from a person indicating body burdens, and the detection of exotic particles in accelerator laboratories.

Light from a scintillator is converted into electrical signals by devices such as the photomultiplier    tube shown schematically in [link] . These tubes are based on the photoelectric effect, which is multiplied in stages into a cascade of electrons, hence the name photomultiplier. Light entering the photomultiplier strikes a metal plate, ejecting an electron that is attracted by a positive potential difference to the next plate, giving it enough energy to eject two or more electrons, and so on. The final output current can be made proportional to the energy of the light entering the tube, which is in turn proportional to the energy deposited in the scintillator. Very sophisticated information can be obtained with scintillators, including energy, charge, particle identification, direction of motion, and so on.

A cylindrical tube contains several curved plates labeled dynodes. Incoming radiation passes through a scintillating material at the top of the cylindrical tube. The photon thus produced generates a photoelectron at the photocathode and the photoelectron is then multiplied by collisions at the several successive dynodes, creating a sizable output electric pulse.
Photomultipliers use the photoelectric effect on the photocathode to convert the light output of a scintillator into an electrical signal. Each successive dynode has a more-positive potential than the last and attracts the ejected electrons, giving them more energy. The number of electrons is thus multiplied at each dynode, resulting in an easily detected output current.

Solid-state radiation detectors convert ionization produced in a semiconductor (like those found in computer chips) directly into an electrical signal. Semiconductors can be constructed that do not conduct current in one particular direction. When a voltage is applied in that direction, current flows only when ionization is produced by radiation, similar to what happens in a Geiger tube. Further, the amount of current in a solid-state detector is closely related to the energy deposited and, since the detector is solid, it can have a high efficiency (since ionizing radiation is stopped in a shorter distance in solids fewer particles escape detection). As with scintillators, very sophisticated information can be obtained from solid-state detectors.

Phet explorations: radioactive dating game

Learn about different types of radiometric dating, such as carbon dating. Understand how decay and half life work to enable radiometric dating to work. Play a game that tests your ability to match the percentage of the dating element that remains to the age of the object.

Radioactive Dating Game

Section summary

  • Radiation detectors are based directly or indirectly upon the ionization created by radiation, as are the effects of radiation on living and inert materials.

Conceptual questions

Is it possible for light emitted by a scintillator to be too low in frequency to be used in a photomultiplier tube? Explain.

Got questions? Get instant answers now!

Problems&Exercises

The energy of 30.0 eV is required to ionize a molecule of the gas inside a Geiger tube, thereby producing an ion pair. Suppose a particle of ionizing radiation deposits 0.500 MeV of energy in this Geiger tube. What maximum number of ion pairs can it create?

1.67 × 10 4

Got questions? Get instant answers now!

A particle of ionizing radiation creates 4000 ion pairs in the gas inside a Geiger tube as it passes through. What minimum energy was deposited, if 30.0 eV is required to create each ion pair?

Got questions? Get instant answers now!

(a) Repeat [link] , and convert the energy to joules or calories. (b) If all of this energy is converted to thermal energy in the gas, what is its temperature increase, assuming 50.0 c m 3 of ideal gas at 0.250-atm pressure? (The small answer is consistent with the fact that the energy is large on a quantum mechanical scale but small on a macroscopic scale.)

Got questions? Get instant answers now!

Suppose a particle of ionizing radiation deposits 1.0 MeV in the gas of a Geiger tube, all of which goes to creating ion pairs. Each ion pair requires 30.0 eV of energy. (a) The applied voltage sweeps the ions out of the gas in 1.00 μ s . What is the current? (b) This current is smaller than the actual current since the applied voltage in the Geiger tube accelerates the separated ions, which then create other ion pairs in subsequent collisions. What is the current if this last effect multiplies the number of ion pairs by 900?

Got questions? Get instant answers now!

Questions & Answers

can a wheat stone bridge balance
jharana Reply
what is Norton's theorm
jharana
an atom is symply a smallest unsplittable particle that makes up a compound
levison Reply
what is atom
Ismaila Reply
nano parricles are arranging periodic
Bala
Water is flowing in a pipe with a varying cross-sectional area, and at all points the water completely fills the pipe. At point 1 the cross-sectional area of the pipe is 0.077 m2, and the magnitude of the fluid velocity is 3.50 m/s. (a) What is the fluid speed at points in the pipe where the cross
fagbeji Reply
A particle behave like a wave and we do not why?
WAQAR
what's the period of velocity 4cm/s at displacement 10cm
Andrew Reply
What is physics
LordRalph Reply
the branch of science concerned with the nature and properties of matter and energy. The subject matter of physics includes mechanics, heat, light and other radiation, sound, electricity, magnetism, and the structure of atoms.
Aluko
and the word of matter is anything that have mass and occupied space
Aluko
what is phyices
Aurang Reply
Whats the formula
Okiri Reply
1/v+1/u=1/f
Aluko
what aspect of black body spectrum forced plank to purpose quantization of energy level in its atoms and molicules
Shoaib Reply
a man has created by who?
Angel Reply
What type of experimental evidence indicates that light is a wave
Edeh Reply
double slit experiment
Eric
The S. L. Unit of sound energy is
Chukwuemeka Reply
Hertz
jharana
what's the conversation like?
ENOBONG Reply
some sort of blatherring or mambo jambo you may say
muhammad
I still don't understand what this group is all about oo
ENOBONG
no
uchenna
ufff....this associated with physics ..so u can ask questions related to all topics of physics..
muhammad
what is sound?
Bella
what is upthrust
Mercy Reply
what is upthrust
Olisa
Up thrust is a force
Samuel
upthrust is a upward force that acts vertical in the ground surface.
Rodney
yes rodney's answer z correct
Paul
what is centre of gravity?
Paul
you think the human body could produce such Force
Anthony
what is wave
Bryan Reply
mirobiology
Angel
Practice Key Terms 5

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask