# 11.2 Density  (Page 2/3)

 Page 2 / 3

## Calculating the mass of a reservoir from its volume

A reservoir has a surface area of $\text{50}\text{.}0\phantom{\rule{0.25em}{0ex}}{\text{km}}^{2}$ and an average depth of 40.0 m. What mass of water is held behind the dam? (See [link] for a view of a large reservoir—the Three Gorges Dam site on the Yangtze River in central China.)

Strategy

We can calculate the volume $V$ of the reservoir from its dimensions, and find the density of water $\rho$ in [link] . Then the mass $m$ can be found from the definition of density

$\rho =\frac{m}{V}.$

Solution

Solving equation $\rho =m/V$ for $m$ gives $m=\rho V$ .

The volume $V$ of the reservoir is its surface area $A$ times its average depth $h$ :

$\begin{array}{lll}V& =& \text{Ah}=\left(\text{50.0}\phantom{\rule{0.25em}{0ex}}{\text{km}}^{2}\right)\left(\text{40.0}\phantom{\rule{0.25em}{0ex}}\text{m}\right)\\ & =& \left[\left(\text{50.0 k}{\text{m}}^{2}\right){\left(\frac{{\text{10}}^{3}\phantom{\rule{0.25em}{0ex}}\text{m}}{1\phantom{\rule{0.25em}{0ex}}\text{km}}\right)}^{2}\right]\left(\text{40.0 m}\right)=2\text{.}\text{00}×{\text{10}}^{9}\phantom{\rule{0.25em}{0ex}}{\text{m}}^{3}\end{array}$

The density of water $\rho$ from [link] is $1\text{.}\text{000}×{\text{10}}^{3}\phantom{\rule{0.25em}{0ex}}{\text{kg/m}}^{3}$ . Substituting $V$ and $\rho$ into the expression for mass gives

$\begin{array}{lll}m& =& \left(1\text{.}\text{00}×{\text{10}}^{3}\phantom{\rule{0.25em}{0ex}}{\text{kg/m}}^{3}\right)\left(2\text{.}\text{00}×{\text{10}}^{9}\phantom{\rule{0.25em}{0ex}}{\text{m}}^{3}\right)\\ & =& 2.00×{\text{10}}^{\text{12}}\phantom{\rule{0.25em}{0ex}}\text{kg.}\end{array}$

Discussion

A large reservoir contains a very large mass of water. In this example, the weight of the water in the reservoir is $\text{mg}=1\text{.}\text{96}×{\text{10}}^{\text{13}}\phantom{\rule{0.25em}{0ex}}\text{N}$ , where $g$ is the acceleration due to the Earth’s gravity (about $9\text{.}\text{80}\phantom{\rule{0.25em}{0ex}}{\text{m/s}}^{2}$ ). It is reasonable to ask whether the dam must supply a force equal to this tremendous weight. The answer is no. As we shall see in the following sections, the force the dam must supply can be much smaller than the weight of the water it holds back.

## Section summary

• Density is the mass per unit volume of a substance or object. In equation form, density is defined as
$\rho =\frac{m}{V}.$
• The SI unit of density is ${\text{kg/m}}^{3}$ .

## Conceptual questions

Approximately how does the density of air vary with altitude?

Give an example in which density is used to identify the substance composing an object. Would information in addition to average density be needed to identify the substances in an object composed of more than one material?

[link] shows a glass of ice water filled to the brim. Will the water overflow when the ice melts? Explain your answer.

## Problems&Exercises

Gold is sold by the troy ounce (31.103 g). What is the volume of 1 troy ounce of pure gold?

$1\text{.}\text{610}\phantom{\rule{0.25em}{0ex}}{\text{cm}}^{3}$

Mercury is commonly supplied in flasks containing 34.5 kg (about 76 lb). What is the volume in liters of this much mercury?

(a) What is the mass of a deep breath of air having a volume of 2.00 L? (b) Discuss the effect taking such a breath has on your body’s volume and density.

(a) 2.58 g

(b) The volume of your body increases by the volume of air you inhale. The average density of your body decreases when you take a deep breath, because the density of air is substantially smaller than the average density of the body before you took the deep breath.

A straightforward method of finding the density of an object is to measure its mass and then measure its volume by submerging it in a graduated cylinder. What is the density of a 240-g rock that displaces $\text{89}\text{.}0\phantom{\rule{0.25em}{0ex}}{\text{cm}}^{3}$ of water? (Note that the accuracy and practical applications of this technique are more limited than a variety of others that are based on Archimedes’ principle.)

$2\text{.}\text{70}\phantom{\rule{0.25em}{0ex}}{\text{g/cm}}^{3}$

Suppose you have a coffee mug with a circular cross section and vertical sides (uniform radius). What is its inside radius if it holds 375 g of coffee when filled to a depth of 7.50 cm? Assume coffee has the same density as water.

(a) A rectangular gasoline tank can hold 50.0 kg of gasoline when full. What is the depth of the tank if it is 0.500-m wide by 0.900-m long? (b) Discuss whether this gas tank has a reasonable volume for a passenger car.

(a) 0.163 m

(b) Equivalent to 19.4 gallons, which is reasonable

A trash compactor can reduce the volume of its contents to 0.350 their original value. Neglecting the mass of air expelled, by what factor is the density of the rubbish increased?

A 2.50-kg steel gasoline can holds 20.0 L of gasoline when full. What is the average density of the full gas can, taking into account the volume occupied by steel as well as by gasoline?

$7\text{.}9×{\text{10}}^{2}\phantom{\rule{0.25em}{0ex}}\phantom{\rule{0ex}{0ex}}{\text{kg/m}}^{3}$

What is the density of 18.0-karat gold that is a mixture of 18 parts gold, 5 parts silver, and 1 part copper? (These values are parts by mass, not volume.) Assume that this is a simple mixture having an average density equal to the weighted densities of its constituents.

$\text{15}\text{.}6\phantom{\rule{0.25em}{0ex}}{\text{g/cm}}^{3}$

There is relatively little empty space between atoms in solids and liquids, so that the average density of an atom is about the same as matter on a macroscopic scale—approximately ${\text{10}}^{3}\phantom{\rule{0.25em}{0ex}}{\text{kg/m}}^{3}$ . The nucleus of an atom has a radius about ${\text{10}}^{-5}$ that of the atom and contains nearly all the mass of the entire atom. (a) What is the approximate density of a nucleus? (b) One remnant of a supernova, called a neutron star, can have the density of a nucleus. What would be the radius of a neutron star with a mass 10 times that of our Sun (the radius of the Sun is $7×{\text{10}}^{8}\phantom{\rule{0.25em}{0ex}}\text{m}$ )?

(a) ${\text{10}}^{\text{18}}\phantom{\rule{0.25em}{0ex}}{\text{kg/m}}^{3}$

(b) $2×{\text{10}}^{4}\phantom{\rule{0.25em}{0ex}}\text{m}$

derivative of first differential equation
why static friction is greater than Kinetic friction
draw magnetic field pattern for two wire carrying current in the same direction
An American traveler in New Zealand carries a transformer to convert New Zealand’s standard 240 V to 120 V so that she can use some small appliances on her trip.
What is the ratio of turns in the primary and secondary coils of her transformer?
nkombo
How electric lines and equipotential surface are mutually perpendicular?
The potential difference between any two points on the surface is zero that implies È.Ŕ=0, Where R is the distance between two different points &E= Electric field intensity. From which we have cos þ =0, where þ is the angle between the directions of field and distance line, as E andR are zero. Thus
sorry..E and R are non zero...
By how much leeway (both percentage and mass) would you have in the selection of the mass of the object in the previous problem if you did not wish the new period to be greater than 2.01 s or less than 1.99 s?
what Is linear momentum
why no diagrams
where
Fayyaz
Myanmar
Pyae
hi
Iroko
hello
Abdu
Describe an experiment to determine short half life
what is science
it's a natural phenomena
Hassan
sap
Emmanuel
please can someone help me with explanations of wave
Benedine
there are seven basic type of wave radio waves, gyamma rays (nuclear energy), microwave,etc you can also search 🔍 on Google :-)
Shravasti
A 20MH coil has a resistance of 50 ohms and us connected in series with a capacitor to a 520MV supply
what is physics
it is the science which we used in our daily life
Sujitha
Physics is the branch of science that deals with the study of matter and the interactions it undergoes with energy
Junior
it is branch of science which deals with study of happening in the human life
AMIT
A 20MH coil has a resistance of 50 ohms and is connected in series with a capacitor to a 250MV supply if the circuit is to resonate at 100KHZ, Determine 1: the capacitance of the capacitor 2: the working voltage of the circuit, given that pie =3.142
Musa
Physics is the branch of science that deals with the study of matter and the interactions it undergoes with energy
Kelly
Heat is transfered by thermal contact but if it is transfered by conduction or radiation, is it possible to reach in thermal equilibrium?
Yes, It is possible by conduction if Surface is Adiabatic
Astronomy
Yeah true ilwith d help of Adiabatic
Kelly
what are the fundamentals qualities
what is physic3
Kalilu
what is physic
Kalilu
Physics? Is a branch of science dealing with matter in relation to energy.
Moses
Physic... Is a purging medicine, which stimulates evacuation of the bowels.
Moses
are you asking for qualities or quantities?
Noman
fundamental quantities are, length , mass, time, current, luminous intensity, amount of substance, thermodynamic temperature.
Shravasti
fundamental quantities are quantities that are independent of others and cannot be define in terms of other quantities there is nothing like Qualities we have only fundamental quantities which includes; length,mass,time, electric current, luminous density, temperature, amount of substance etc
give examples of three dimensional frame of reference
Universe
Noman
Yes the Universe itself
Astronomy