<< Chapter < Page Chapter >> Page >
  • Understand and apply a problem-solving procedure to solve problems using Newton's laws of motion.

Success in problem solving is obviously necessary to understand and apply physical principles, not to mention the more immediate need of passing exams. The basics of problem solving, presented earlier in this text, are followed here, but specific strategies useful in applying Newton’s laws of motion are emphasized. These techniques also reinforce concepts that are useful in many other areas of physics. Many problem-solving strategies are stated outright in the worked examples, and so the following techniques should reinforce skills you have already begun to develop.

Problem-solving strategy for newton’s laws of motion

Step 1. As usual, it is first necessary to identify the physical principles involved. Once it is determined that Newton’s laws of motion are involved (if the problem involves forces), it is particularly important to draw a careful sketch of the situation . Such a sketch is shown in [link] (a). Then, as in [link] (b), use arrows to represent all forces, label them carefully, and make their lengths and directions correspond to the forces they represent (whenever sufficient information exists).

(a) A sketch is shown of a man hanging from a vine. (b) The forces acting on the person, shown by vector arrows, are tension T, pointing upward at the hand of the man, F sub T, from the same point but in a downward direction, and weight W, acting downward from his stomach. (c) In figure (c) we define only the man as the system of interest. Tension T is acting upward from his hand. The weight W acts in a downward direction. In a free-body diagram W is shown by an arrow acting downward and T is shown by an arrow acting vertically upward. (d) Tension T is shown by an arrow vertically upward and another vector, weight W, is shown by an arrow vertically downward, both having the same lengths. It is indicated that T is equal to minus W.
(a) A sketch of Tarzan hanging from a vine. (b) Arrows are used to represent all forces. T size 12{T} {} is the tension in the vine above Tarzan, F T size 12{F rSub { size 8{T} } } {} is the force he exerts on the vine, and w size 12{w} {} is his weight. All other forces, such as the nudge of a breeze, are assumed negligible. (c) Suppose we are given the ape man’s mass and asked to find the tension in the vine. We then define the system of interest as shown and draw a free-body diagram. F T size 12{F rSub { size 8{T} } } {} is no longer shown, because it is not a force acting on the system of interest; rather, F T size 12{F rSub { size 8{T} } } {} acts on the outside world. (d) Showing only the arrows, the head-to-tail method of addition is used. It is apparent that T = - w size 12{T=w} {} , if Tarzan is stationary.

Step 2. Identify what needs to be determined and what is known or can be inferred from the problem as stated. That is, make a list of knowns and unknowns. Then carefully determine the system of interest . This decision is a crucial step, since Newton’s second law involves only external forces. Once the system of interest has been identified, it becomes possible to determine which forces are external and which are internal, a necessary step to employ Newton’s second law. (See [link] (c).) Newton’s third law may be used to identify whether forces are exerted between components of a system (internal) or between the system and something outside (external). As illustrated earlier in this chapter, the system of interest depends on what question we need to answer. This choice becomes easier with practice, eventually developing into an almost unconscious process. Skill in clearly defining systems will be beneficial in later chapters as well.

A diagram showing the system of interest and all of the external forces is called a free-body diagram    . Only forces are shown on free-body diagrams, not acceleration or velocity. We have drawn several of these in worked examples. [link] (c) shows a free-body diagram for the system of interest. Note that no internal forces are shown in a free-body diagram.

Questions & Answers

tree physical properties of heat
Bello Reply
tree is a type of organism that grows very tall and have a wood trunk and branches with leaves... how is that related to heat? what did you smoke man?
what are the uses of dimensional analysis
Racheal Reply
Dimensional Analysis. The study of relationships between physical quantities with the help of their dimensions and units of measurements is called dimensional analysis. We use dimensional analysis in order to convert a unit from one form to another.
meaning of OE and making of the subscript nc
ferunmi Reply
can I ask a question
kinetic functional force
Moyagabo Reply
what is a principal wave?
Haider Reply
A wave the movement of particles on rest position transferring energy from one place to another
not wave. i need to know principal wave or waves.
principle wave is a superposition of wave when two or more waves meet at a point , whose amplitude is the algebraic sum of the amplitude of the waves
kindly define principal wave not principle wave (principle of super position) if u can understand my question
what is a model?
Ella Reply
why are electros emitted only when the frequency of the incident radiation is greater than a certain value
b/c u have to know that for emission of electron need specific amount of energy which are gain by electron for emission . if incident rays have that amount of energy electron can be emitted, otherwise no way.
search photoelectric effect on Google
what is ohm's law
Pamilerin Reply
states that electric current in a given metallic conductor is directly proportional to the potential difference applied between its end, provided that the temperature of the conductor and other physical factors such as length and cross-sectional area remains constant. mathematically V=IR
A body travelling at a velocity of 30ms^-1 in a straight line is brought to rest by application of brakes. if it covers a distance of 100m during this period, find the retardation.
Pamilerin Reply
just use v^2-u^2=2as
how often does electrolyte emits?
just use +€^3.7°√π%-4¢•∆¥%
v^2-u^2=2as v=0,u=30,s=100 -30^2=2a*100 -900=200a a=-900/200 a=-4.5m/s^2
what is distribution of trade
Grace Reply
what's acceleration
Joshua Reply
The change in position of an object with respect to time
Acceleration is velocity all over time
It's not It's the change of velocity relative to time
Velocity is the change of position relative to time
acceleration it is the rate of change in velocity with time
acceleration is change in velocity per rate of time
what is ohm's law
Ohm's law is related to resistance by which volatge is the multiplication of current and resistance ( U=RI)
acceleration is the rate of change. of displacement with time.
the rate of change of velocity is called acceleration
how i don understand
Willam Reply
how do I access the Multiple Choice Questions? the button never works and the essay one doesn't either
Savannah Reply
How do you determine the magnitude of force
Peace Reply
mass × acceleration OR Work done ÷ distance
Which eye defect is corrected by a lens having different curvatures in two perpendicular directions?
Valentina Reply
acute astigmatism?

Get the best College physics course in your pocket!

Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?