<< Chapter < Page Chapter >> Page >
Graphs of pressure versus volume at six different temperatures, T one through T five and T critical. T one is the lowest temperature and T five is the highest. T critical is in the middle. Graphs show that pressure per unit volume is greater for greater temperatures. Pressure decreases with increasing volume for all temperatures, except at low temperatures when pressure is constant with increasing volume during a phase change.
PV size 12{ ital "PV"} {} diagrams. (a) Each curve (isotherm) represents the relationship between P size 12{P} {} and V size 12{V} {} at a fixed temperature; the upper curves are at higher temperatures. The lower curves are not hyperbolas, because the gas is no longer an ideal gas. (b) An expanded portion of the PV size 12{ ital "PV"} {} diagram for low temperatures, where the phase can change from a gas to a liquid. The term “vapor” refers to the gas phase when it exists at a temperature below the boiling temperature.
Critical temperatures and pressures
Substance Critical temperature Critical pressure
K size 12{K} {} º C size 12{°C} {} Pa size 12{"Pa"} {} atm size 12{"atm"} {}
Water 647.4 374.3 22 . 12 × 10 6 size 12{"22" "." "12"×"10" rSup { size 8{6} } } {} 219.0
Sulfur dioxide 430.7 157.6 7 . 88 × 10 6 size 12{7 "." "88" times "10" rSup { size 8{6} } } {} 78.0
Ammonia 405.5 132.4 11 . 28 × 10 6 size 12{"11" "." "28"×"10" rSup { size 8{6} } } {} 111.7
Carbon dioxide 304.2 31.1 7 . 39 × 10 6 size 12{7 "." "39"×"10" rSup { size 8{6} } } {} 73.2
Oxygen 154.8 −118.4 5 . 08 × 10 6 size 12{5 "." "08"×"10" rSup { size 8{6} } } {} 50.3
Nitrogen 126.2 −146.9 3 . 39 × 10 6 size 12{3 "." "39"×"10" rSup { size 8{6} } } {} 33.6
Hydrogen 33.3 −239.9 1 . 30 × 10 6 size 12{1 "." "30"×"10" rSup { size 8{6} } } {} 12.9
Helium 5.3 −267.9 0 . 229 × 10 6 size 12{0 "." "229" times "10" rSup { size 8{6} } } {} 2.27

Phase diagrams

The plots of pressure versus temperatures provide considerable insight into thermal properties of substances. There are well-defined regions on these graphs that correspond to various phases of matter, so PT size 12{ ital "PT"} {} graphs are called phase diagrams . [link] shows the phase diagram for water. Using the graph, if you know the pressure and temperature you can determine the phase of water. The solid lines—boundaries between phases—indicate temperatures and pressures at which the phases coexist (that is, they exist together in ratios, depending on pressure and temperature). For example, the boiling point of water is 100 º C size 12{"100"°C} {} at 1.00 atm. As the pressure increases, the boiling temperature rises steadily to 374 º C size 12{"374"°C} {} at a pressure of 218 atm. A pressure cooker (or even a covered pot) will cook food faster because the water can exist as a liquid at temperatures greater than 100 º C size 12{"100"°C} {} without all boiling away. The curve ends at a point called the critical point , because at higher temperatures the liquid phase does not exist at any pressure. The critical point occurs at the critical temperature, as you can see for water from [link] . The critical temperature for oxygen is 118 º C size 12{ +- "118"°C} {} , so oxygen cannot be liquefied above this temperature.

Graph of pressure versus temperature showing the boundaries of the three phases of water, along with the triple point and critical point. The triple point, where all three phases exist, is at 0 point 006 atmospheres and 0 point 01 degrees C. The critical point is at two hundred eighteen atmospheres and three hundred seventy four degrees C. Solid water is in the P T region generally to the left (lower temperature, lower or higher pressure, from the triple point). Liquid water is generally above and to the right of the triple point (higher pressure, higher temperature). The region of water vapor is to the lower right of the triple point (lower pressure and temperature to higher temperature and pressure).
The phase diagram ( PT size 12{ ital "PT"} {} graph) for water. Note that the axes are nonlinear and the graph is not to scale. This graph is simplified—there are several other exotic phases of ice at higher pressures.

Similarly, the curve between the solid and liquid regions in [link] gives the melting temperature at various pressures. For example, the melting point is 0 º C size 12{0°C} {} at 1.00 atm, as expected. Note that, at a fixed temperature, you can change the phase from solid (ice) to liquid (water) by increasing the pressure. Ice melts from pressure in the hands of a snowball maker. From the phase diagram, we can also say that the melting temperature of ice rises with increased pressure. When a car is driven over snow, the increased pressure from the tires melts the snowflakes; afterwards the water refreezes and forms an ice layer.

At sufficiently low pressures there is no liquid phase, but the substance can exist as either gas or solid. For water, there is no liquid phase at pressures below 0.00600 atm. The phase change from solid to gas is called sublimation    . It accounts for large losses of snow pack that never make it into a river, the routine automatic defrosting of a freezer, and the freeze-drying process applied to many foods. Carbon dioxide, on the other hand, sublimates at standard atmospheric pressure of 1 atm. (The solid form of CO 2 size 12{"CO" rSub { size 8{2} } } {} is known as dry ice because it does not melt. Instead, it moves directly from the solid to the gas state.)

Questions & Answers

A soccer player kicked off a ball at velocity of 62 ft/s at angle 45°. A goal keeper is 43 yard away from the direction in which ball kicked off. At what minimum velocity he runs to meet the ball?
Ram Reply
A soccer player kicked off the ball at the velocity of 62 ft/s at 45° with horizontal.A goal keeper is 43 yard away from the ball kicked position.At what minimum velocity he runs to meet the ball?
Ram
what is torque
Deepak Reply
The turning effect of force is called torque.
Uzair
What is the effect of static electricity
Ruth
what there factors affect the surface tension of a liquid
Promise Reply
formula for impedance
muyiwa Reply
ehat is central forces
Nita Reply
what is distance?
Jonathan Reply
What does mean ohms law imply
Victoria Reply
ohms law state that the electricity passing through a metallic conductor is directly proportional to the potential difference across its end
muyiwa
what is matter
folajin Reply
Anything that occupies space
Kevin
Any thing that has weight and occupies space
Victoria
Anything which we can feel by any of our 5 sense organs
Suraj
Right
Roben
thanks
Suraj
what is a sulphate
Alo
any answers
Alo
the time rate of increase in velocity is called
Blessing Reply
acceleration
Emma
What is uniform velocity
Victoria
Greetings,users of that wonderful app.
Frank Reply
how to solve pressure?
Cruz Reply
how do we calculate weight and eara eg an elefant that weight 2000kg has four fits or legs search of surface eara is 0.1m2(1metre square) incontact with the ground=10m2(g =10m2)
Cruz
P=F/A
Mira
can someone derive the formula a little bit deeper?
Bern
what is coplanar force?
OLADITI Reply
forces acting and lying on d same plane
Promise
what is accuracy and precision
Peace Reply
How does a current follow?
Vineeta Reply
follow?
akif
which one dc or ac current.
akif
how does a current following?
Vineeta
?
akif
AC current
Vineeta
AC current follows due to changing electric field and magnetic field.
akif
you guys are just saying follow is flow not follow please
Abubakar
ok bro thanks
akif
flows
Abubakar
but i wanted to understand him/her in his own language
akif
but I think the statement is written in English not any other language
Abubakar
my mean that in which form he/she written this,will understand better in this form, i write.
akif
ok
Abubakar
ok thanks bro. my mistake
Vineeta
u are welcome
Abubakar
what is a semiconductor
Vineeta Reply
substances having lower forbidden gap between valence band and conduction band
akif
what is a conductor?
Vineeta
replace lower by higher only
akif
convert 56°c to kelvin
Abubakar
How does a current follow?
Vineeta
A semiconductor is any material whose conduction lies between that of a conductor and an insulator.
AKOWUAH

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask