<< Chapter < Page Chapter >> Page >
Q = CV . size 12{Q= ital "CV"} {}

This equation expresses the two major factors affecting the amount of charge stored. Those factors are the physical characteristics of the capacitor, C size 12{C} {} , and the voltage, V . Rearranging the equation, we see that capacitance C size 12{C} {} is the amount of charge stored per volt, or

C = Q V . size 12{C=Q/V} {}

Capacitance

Capacitance C size 12{C} {} is the amount of charge stored per volt, or

C = Q V . size 12{C=Q/V} {}

The unit of capacitance is the farad (F), named for Michael Faraday (1791–1867), an English scientist who contributed to the fields of electromagnetism and electrochemistry. Since capacitance is charge per unit voltage, we see that a farad is a coulomb per volt, or

1 F = 1 C 1 V . size 12{F= { {"1 C"} over {"1 V"} } } {}

A 1-farad capacitor would be able to store 1 coulomb (a very large amount of charge) with the application of only 1 volt. One farad is, thus, a very large capacitance. Typical capacitors range from fractions of a picofarad 1 pF = 10 –12 F size 12{ left (1" pF"="10" rSup { size 8{-"12"} } " F" right )} {} to millifarads 1 mF = 10 –3 F size 12{ left (1" mF"="10" rSup { size 8{-3} } " F" right )} {} .

[link] shows some common capacitors. Capacitors are primarily made of ceramic, glass, or plastic, depending upon purpose and size. Insulating materials, called dielectrics, are commonly used in their construction, as discussed below.

There are various types of capacitors with varying shapes and color. Some are cylindrical in shape, some circular in shape, some rectangular in shape, with two strands of wire coming out of each.
Some typical capacitors. Size and value of capacitance are not necessarily related. (credit: Windell Oskay)

Parallel plate capacitor

The parallel plate capacitor shown in [link] has two identical conducting plates, each having a surface area A size 12{A} {} , separated by a distance d size 12{d} {} (with no material between the plates). When a voltage V size 12{V} {} is applied to the capacitor, it stores a charge Q size 12{Q} {} , as shown. We can see how its capacitance depends on A size 12{A} {} and d size 12{d} {} by considering the characteristics of the Coulomb force. We know that like charges repel, unlike charges attract, and the force between charges decreases with distance. So it seems quite reasonable that the bigger the plates are, the more charge they can store—because the charges can spread out more. Thus C size 12{C} {} should be greater for larger A size 12{A} {} . Similarly, the closer the plates are together, the greater the attraction of the opposite charges on them. So C size 12{C} {} should be greater for smaller d size 12{d} {} .

Two parallel plates are placed facing each other. The area of each plate is A, and the distance between the plates is d. The plate on the left is connected to the positive terminal of the battery, and the plate on the right is connected to the negative terminal of the battery.
Parallel plate capacitor with plates separated by a distance d size 12{d} {} . Each plate has an area A size 12{A} {} .

It can be shown that for a parallel plate capacitor there are only two factors ( A size 12{A} {} and d size 12{d} {} ) that affect its capacitance C size 12{C} {} . The capacitance of a parallel plate capacitor in equation form is given by

C = ε 0 A d . size 12{C=e rSub { size 8{0} } A/d} {}

Capacitance of a parallel plate capacitor

C = ε 0 A d size 12{C=e rSub { size 8{0} } A/d} {}

A size 12{A} {} is the area of one plate in square meters, and d is the distance between the plates in meters. The constant ε 0 is the permittivity of free space; its numerical value in SI units is ε 0 = 8.85 × 10 12 F/m . The units of F/m are equivalent to C 2 /N · m 2 size 12{ left (C rSup { size 8{2} } "/N" cdot m rSup { size 8{2} } right )} {} . The small numerical value of ε 0 size 12{e rSub { size 8{0} } } {} is related to the large size of the farad. A parallel plate capacitor must have a large area to have a capacitance approaching a farad. (Note that the above equation is valid when the parallel plates are separated by air or free space. When another material is placed between the plates, the equation is modified, as discussed below.)

Capacitance and charge stored in a parallel plate capacitor

(a) What is the capacitance of a parallel plate capacitor with metal plates, each of area 1.00 m 2 size 12{m rSup { size 8{2} } } {} , separated by 1.00 mm? (b) What charge is stored in this capacitor if a voltage of 3.00 × 10 3 V is applied to it?

Strategy

Finding the capacitance C size 12{C} {} is a straightforward application of the equation C = ε 0 A / d size 12{C=e rSub { size 8{0} } A/d} {} . Once C size 12{C} {} is found, the charge stored can be found using the equation Q = CV size 12{Q= ital "CV"} {} .

Solution for (a)

Entering the given values into the equation for the capacitance of a parallel plate capacitor yields

C = ε 0 A d = 8.85 × 10 –12 F m 1.00 m 2 1.00 × 10 –3 m = 8.85 × 10 –9 F = 8.85 nF.

Discussion for (a)

This small value for the capacitance indicates how difficult it is to make a device with a large capacitance. Special techniques help, such as using very large area thin foils placed close together.

Solution for (b)

The charge stored in any capacitor is given by the equation Q = CV size 12{Q= ital "CV"} {} . Entering the known values into this equation gives

Q = CV = 8.85 × 10 –9 F 3.00 × 10 3 V = 26.6 μC. alignl { stack { size 12{Q= ital "CV"= left (8 "." "85"´"10" rSup { size 8{-9} } " F" right ) left (3 "." "00"´"10" rSup { size 8{3} } " V" right )} {} #="26" "." 6 µC "." {} } } {}

Discussion for (b)

This charge is only slightly greater than those found in typical static electricity. Since air breaks down at about 3 . 00 × 10 6 V/m size 12{3 "." "00" times "10" rSup { size 8{6} } } {} , more charge cannot be stored on this capacitor by increasing the voltage.

Got questions? Get instant answers now!

Questions & Answers

what there factors affect the surface tension of a liquid
Promise Reply
formula for impedance
muyiwa Reply
ehat is central forces
Nita Reply
what is distance?
Jonathan Reply
What does mean ohms law imply
Victoria Reply
ohms law state that the electricity passing through a metallic conductor is directly proportional to the potential difference across its end
muyiwa
what is matter
folajin Reply
Anything that occupies space
Kevin
Any thing that has weight and occupies space
Victoria
Anything which we can feel by any of our 5 sense organs
Suraj
Right
Roben
thanks
Suraj
what is a sulphate
Alo
any answers
Alo
the time rate of increase in velocity is called
Blessing Reply
acceleration
Emma
What is uniform velocity
Victoria
Greetings,users of that wonderful app.
Frank Reply
how to solve pressure?
Cruz Reply
how do we calculate weight and eara eg an elefant that weight 2000kg has four fits or legs search of surface eara is 0.1m2(1metre square) incontact with the ground=10m2(g =10m2)
Cruz
P=F/A
Mira
can someone derive the formula a little bit deeper?
Bern
what is coplanar force?
OLADITI Reply
forces acting and lying on d same plane
Promise
what is accuracy and precision
Peace Reply
How does a current follow?
Vineeta Reply
follow?
akif
which one dc or ac current.
akif
how does a current following?
Vineeta
?
akif
AC current
Vineeta
AC current follows due to changing electric field and magnetic field.
akif
you guys are just saying follow is flow not follow please
Abubakar
ok bro thanks
akif
flows
Abubakar
but i wanted to understand him/her in his own language
akif
but I think the statement is written in English not any other language
Abubakar
my mean that in which form he/she written this,will understand better in this form, i write.
akif
ok
Abubakar
ok thanks bro. my mistake
Vineeta
u are welcome
Abubakar
what is a semiconductor
Vineeta Reply
substances having lower forbidden gap between valence band and conduction band
akif
what is a conductor?
Vineeta
replace lower by higher only
akif
convert 56°c to kelvin
Abubakar
How does a current follow?
Vineeta
A semiconductor is any material whose conduction lies between that of a conductor and an insulator.
AKOWUAH
what is Atom? what is molecules? what is ions?
Abubakar Reply
atoms are the smallest unit of an element which is capable of behaving as a single unit
Promise
a molecule is d smallest unit of a substances capable of independent existence and can also retain the chemical proper ties of that substance
Promise
an ion is referred to as freely moving charged particles
Promise
What is a molecule
Samuel Reply
Is a unit of a compound that has two or more atoms either of the same or different atoms
Justice
A molecule is the smallest indivisible unit of a compound, Just like the atom is the smallest indivisible unit of an element.
Rachel
what is a molecule?
Vineeta
Practice Key Terms 6

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask