# 25.6 Image formation by lenses  (Page 7/18)

 Page 7 / 18

## Virtual image

An image that is on the same side of the lens as the object and cannot be projected on a screen is called a virtual image.

## Image produced by a magnifying glass

Suppose the book page in [link] (a) is held 7.50 cm from a convex lens of focal length 10.0 cm, such as a typical magnifying glass might have. What magnification is produced?

Strategy and Concept

We are given that ${d}_{\text{o}}=7\text{.}\text{50 cm}$ and $f=\text{10}\text{.}\text{0 cm}$ , so we have a situation where the object is placed closer to the lens than its focal length. We therefore expect to get a case 2 virtual image with a positive magnification that is greater than 1. Ray tracing produces an image like that shown in [link] , but we will use the thin lens equations to get numerical solutions in this example.

Solution

To find the magnification $m$ , we try to use magnification equation, $m={\mathrm{–d}}_{\text{i}}/{d}_{\text{o}}$ . We do not have a value for ${d}_{\text{i}}$ , so that we must first find the location of the image using lens equation. (The procedure is the same as followed in the preceding example, where ${d}_{\text{o}}$ and $f$ were known.) Rearranging the magnification equation to isolate ${d}_{\text{i}}$ gives

$\frac{1}{{d}_{\text{i}}}=\frac{1}{f}-\frac{1}{{d}_{\text{o}}}\text{.}$

Entering known values, we obtain a value for $1/{d}_{\text{i}}$ :

$\frac{1}{{d}_{\text{i}}}=\frac{1}{\text{10.0 cm}}-\frac{1}{7\text{.}\text{50 cm}}=\frac{-0\text{.}\text{0333}}{\text{cm}}\text{.}$

This must be inverted to find ${d}_{\text{i}}$ :

${d}_{\text{i}}=-\frac{\text{cm}}{0\text{.}\text{0333}}=-\text{30.0 cm}.$

Now the thin lens equation can be used to find the magnification $m$ , since both ${d}_{\text{i}}$ and ${d}_{\text{o}}$ are known. Entering their values gives

$m=-\frac{{d}_{\text{i}}}{{d}_{\text{o}}}=-\frac{-\text{30}\text{.}0 cm}{\text{7}\text{.}50 cm}=4\text{.}\text{00.}$

Discussion

A number of results in this example are true of all case 2 images, as well as being consistent with [link] . Magnification is indeed positive (as predicted), meaning the image is upright. The magnification is also greater than 1, meaning that the image is larger than the object—in this case, by a factor of 4. Note that the image distance is negative. This means the image is on the same side of the lens as the object. Thus the image cannot be projected and is virtual. (Negative values of ${d}_{\text{i}}$ occur for virtual images.) The image is farther from the lens than the object, since the image distance is greater in magnitude than the object distance. The location of the image is not obvious when you look through a magnifier. In fact, since the image is bigger than the object, you may think the image is closer than the object. But the image is farther away, a fact that is useful in correcting farsightedness, as we shall see in a later section.

A third type of image is formed by a diverging or concave lens. Try looking through eyeglasses meant to correct nearsightedness. (See [link] .) You will see an image that is upright but smaller than the object. This means that the magnification is positive but less than 1. The ray diagram in [link] shows that the image is on the same side of the lens as the object and, hence, cannot be projected—it is a virtual image. Note that the image is closer to the lens than the object. This is a case 3 image, formed for any object by a negative focal length or diverging lens.

why static friction is greater than Kinetic friction
draw magnetic field pattern for two wire carrying current in the same direction
An American traveler in New Zealand carries a transformer to convert New Zealand’s standard 240 V to 120 V so that she can use some small appliances on her trip.
What is the ratio of turns in the primary and secondary coils of her transformer?
nkombo
How electric lines and equipotential surface are mutually perpendicular?
The potential difference between any two points on the surface is zero that implies È.Ŕ=0, Where R is the distance between two different points &E= Electric field intensity. From which we have cos þ =0, where þ is the angle between the directions of field and distance line, as E andR are zero. Thus
sorry..E and R are non zero...
By how much leeway (both percentage and mass) would you have in the selection of the mass of the object in the previous problem if you did not wish the new period to be greater than 2.01 s or less than 1.99 s?
what Is linear momentum
why no diagrams
where
Fayyaz
Myanmar
Pyae
hi
Iroko
hello
Abdu
Describe an experiment to determine short half life
what is science
it's a natural phenomena
Hassan
sap
Emmanuel
please can someone help me with explanations of wave
Benedine
A 20MH coil has a resistance of 50 ohms and us connected in series with a capacitor to a 520MV supply
what is physics
it is the science which we used in our daily life
Sujitha
Physics is the branch of science that deals with the study of matter and the interactions it undergoes with energy
Junior
it is branch of science which deals with study of happening in the human life
AMIT
A 20MH coil has a resistance of 50 ohms and is connected in series with a capacitor to a 250MV supply if the circuit is to resonate at 100KHZ, Determine 1: the capacitance of the capacitor 2: the working voltage of the circuit, given that pie =3.142
Musa
Physics is the branch of science that deals with the study of matter and the interactions it undergoes with energy
Kelly
Heat is transfered by thermal contact but if it is transfered by conduction or radiation, is it possible to reach in thermal equilibrium?
Yes, It is possible by conduction if Surface is Adiabatic
Astronomy
Yeah true ilwith d help of Adiabatic
Kelly
what are the fundamentals qualities
what is physic3
Kalilu
what is physic
Kalilu
Physics? Is a branch of science dealing with matter in relation to energy.
Moses
Physic... Is a purging medicine, which stimulates evacuation of the bowels.
Moses
are you asking for qualities or quantities?
Noman
give examples of three dimensional frame of reference
Universe
Noman
Yes the Universe itself
Astronomy
Examine different types of shoes, including sports shoes and thongs. In terms of physics, why are the bottom surfaces designed as they are? What differences will dry and wet conditions make for these surfaces?
sports shoes are designed in such a way they are gripped well with your feet and their bases have and high friction surfaces, Thong shoes are for comfort, these are easily removed and light weight. these are usually low friction surfaces but in wet conditions they offer greater friction.
Noman
thong sleepers are usually used in restrooms.
Noman