<< Chapter < Page Chapter >> Page >
  • Define nonconservative forces and explain how they affect mechanical energy.
  • Show how the principle of conservation of energy can be applied by treating the conservative forces in terms of their potential energies and any nonconservative forces in terms of the work they do.

Nonconservative forces and friction

Forces are either conservative or nonconservative. Conservative forces were discussed in Conservative Forces and Potential Energy . A nonconservative force    is one for which work depends on the path taken. Friction is a good example of a nonconservative force. As illustrated in [link] , work done against friction depends on the length of the path between the starting and ending points. Because of this dependence on path, there is no potential energy associated with nonconservative forces. An important characteristic is that the work done by a nonconservative force adds or removes mechanical energy from a system . Friction , for example, creates thermal energy that dissipates, removing energy from the system. Furthermore, even if the thermal energy is retained or captured, it cannot be fully converted back to work, so it is lost or not recoverable in that sense as well.

(a) A drawing of a happy face is erased diagonally from a point A to a point B. (b) A drawing of a happy face is erased in the shape of the letter u, but starting from the same point A and ending at the same point B.
The amount of the happy face erased depends on the path taken by the eraser between points A and B, as does the work done against friction. Less work is done and less of the face is erased for the path in (a) than for the path in (b). The force here is friction, and most of the work goes into thermal energy that subsequently leaves the system (the happy face plus the eraser). The energy expended cannot be fully recovered.

How nonconservative forces affect mechanical energy

Mechanical energy may not be conserved when nonconservative forces act. For example, when a car is brought to a stop by friction on level ground, it loses kinetic energy, which is dissipated as thermal energy, reducing its mechanical energy. [link] compares the effects of conservative and nonconservative forces. We often choose to understand simpler systems such as that described in [link] (a) first before studying more complicated systems as in [link] (b).

(a) A system is shown in three situations. First, a rock is dropped onto a spring attached to the ground. The rock has potential energy P E sub 0 at the highest point before it is dropped on the spring. In the second situation, the rock has fallen onto the spring and the spring is compressed and has potential energy P E sub s. And in the third situation, the spring pushes the rock into the air; then the rock has some kinetic and some potential energy, labeled as K E plus P E sub g prime. (b) A rock is at some height above the ground, having potential energy P E sub g, and as it hits the ground all of the rock’s energy is used to produce heat, sound, and deformation of the ground.
Comparison of the effects of conservative and nonconservative forces on the mechanical energy of a system. (a) A system with only conservative forces. When a rock is dropped onto a spring, its mechanical energy remains constant (neglecting air resistance) because the force in the spring is conservative. The spring can propel the rock back to its original height, where it once again has only potential energy due to gravity. (b) A system with nonconservative forces. When the same rock is dropped onto the ground, it is stopped by nonconservative forces that dissipate its mechanical energy as thermal energy, sound, and surface distortion. The rock has lost mechanical energy.

How the work-energy theorem applies

Now let us consider what form the work-energy theorem takes when both conservative and nonconservative forces act. We will see that the work done by nonconservative forces equals the change in the mechanical energy of a system. As noted in Kinetic Energy and the Work-Energy Theorem , the work-energy theorem states that the net work on a system equals the change in its kinetic energy, or W net = ΔKE size 12{W rSub { size 8{"net"} } =D"KE"} {} . The net work is the sum of the work by nonconservative forces plus the work by conservative forces. That is,

Questions & Answers

Describe an experiment to determine short half life
Tyson Reply
what is science
Kenedy Reply
A 20MH coil has a resistance of 50 ohms and us connected in series with a capacitor to a 520MV supply
Musa Reply
what is physics
Caya Reply
it is the science which we used in our daily life
Sujitha
Physics is the branch of science that deals with the study of matter and the interactions it undergoes with energy
Junior
it is branch of science which deals with study of happening in the human life
AMIT
it is when you get up of your arse and do some real work 😁
A 20MH coil has a resistance of 50 ohms and is connected in series with a capacitor to a 250MV supply if the circuit is to resonate at 100KHZ, Determine 1: the capacitance of the capacitor 2: the working voltage of the circuit, given that pie =3.142
Musa
Heat is transfered by thermal contact but if it is transfered by conduction or radiation, is it possible to reach in thermal equilibrium?
Eden Reply
Yes, It is possible by conduction if Surface is Adiabatic
Astronomy
what are the fundamentals qualities
Magret Reply
what is physic3
Kalilu
what is physic
Kalilu
Physics? Is a branch of science dealing with matter in relation to energy.
Moses
Physic... Is a purging medicine, which stimulates evacuation of the bowels.
Moses
are you asking for qualities or quantities?
Noman
give examples of three dimensional frame of reference
Ekwunazor Reply
your fat arse sitting all day is a good reference of three dimensional numbnut
Universe
Noman
Yes the Universe itself
Astronomy
Examine different types of shoes, including sports shoes and thongs. In terms of physics, why are the bottom surfaces designed as they are? What differences will dry and wet conditions make for these surfaces?
Lathan Reply
sports shoes are designed in such a way they are gripped well with your feet and their bases have and high friction surfaces, Thong shoes are for comfort, these are easily removed and light weight. these are usually low friction surfaces but in wet conditions they offer greater friction.
Noman
thong sleepers are usually used in restrooms.
Noman
what is wave
Ochigbo Reply
The phenomenon of transfer of energy
Noman
how does time flow in one dimension
Lord Reply
you mean in three dimensions......numbnut
yeah that was a mistake
Lord
if it flows in three dimensions does it mean if an object theoretically moves beyond the speed of light it won't experience time
Lord
time seems to flow in one direction...but I the past present and future happen every moment time flies regardless.
but if an object moves beyond the speed of light time stops right for it
Lord
yes but at light speed it ceases
Lord
yes it always flow from past to future.
Noman
if v=ktx Ly Mz find the value of x,y and z
Emmanuel Reply
x=v=ktx Ly Mz find the value of x,y and z
y=v=ktx Ly Mz find the value of x,y and z
z=v=ktx Ly Mz find the value of x,y and z
now get your lazy arse up and clean the kitchen 😁
I want to join the conversation
Subaba Reply
😂
hmm
Stephen
what conversation you talking about? .....numbnut
how do i calculate for period of the oscillation
Bridget Reply
T=2π√(m÷k).K is spring constance
Ambe
T=2π√m/k
Lord
does the force in a system result in the energy transfer?
Lebatam Reply
full meaning of GPS system
Anaele Reply
global positioning system
Noman
what's the use of the GPS
Matthew
Practice Key Terms 2

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask