# 2.8 Graphical analysis of one dimensional motion

 Page 1 / 8

## Learning objectives

By the end of this section, you will be able to:

• Describe a straight-line graph in terms of its slope and y -intercept.
• Determine average velocity or instantaneous velocity from a graph of position vs. time.
• Determine average or instantaneous acceleration from a graph of velocity vs. time.
• Derive a graph of velocity vs. time from a graph of position vs. time.
• Derive a graph of acceleration vs. time from a graph of velocity vs. time.

A graph, like a picture, is worth a thousand words. Graphs not only contain numerical information; they also reveal relationships between physical quantities. This section uses graphs of displacement, velocity, and acceleration versus time to illustrate one-dimensional kinematics.

## Slopes and general relationships

First note that graphs in this text have perpendicular axes, one horizontal and the other vertical. When two physical quantities are plotted against one another in such a graph, the horizontal axis is usually considered to be an independent variable    and the vertical axis a dependent variable    . If we call the horizontal axis the $x$ -axis and the vertical axis the $y$ -axis, as in [link] , a straight-line graph has the general form

$y=\text{mx}+b.$

Here $m$ is the slope    , defined to be the rise divided by the run (as seen in the figure) of the straight line. The letter $b$ is used for the y -intercept , which is the point at which the line crosses the vertical axis. A straight-line graph. The equation for a straight line is y = mx + b size 12{y= ital "mx"+b} {} .

## Graph of displacement vs. time ( a = 0, so v Is constant)

Time is usually an independent variable that other quantities, such as displacement, depend upon. A graph of displacement versus time would, thus, have $x$ on the vertical axis and $t$ on the horizontal axis. [link] is just such a straight-line graph. It shows a graph of displacement versus time for a jet-powered car on a very flat dry lake bed in Nevada. Graph of displacement versus time for a jet-powered car on the Bonneville Salt Flats.

Using the relationship between dependent and independent variables, we see that the slope in the graph above is average velocity $\stackrel{-}{v}$ and the intercept is displacement at time zero—that is, ${x}_{0}$ . Substituting these symbols into $y=\text{mx}+b$ gives

$x=\stackrel{-}{v}t+{x}_{0}$

or

$x={x}_{0}+\stackrel{-}{v}t.$

Thus a graph of displacement versus time gives a general relationship among displacement, velocity, and time, as well as giving detailed numerical information about a specific situation.

## The slope of x Vs. t

The slope of the graph of displacement $x$ vs. time $t$ is velocity $v$ .

$\text{slope}=\frac{\Delta x}{\Delta t}=v$

Notice that this equation is the same as that derived algebraically from other motion equations in Motion Equations for Constant Acceleration in One Dimension .

From the figure we can see that the car has a displacement of 400 m at time 0.650 m at $t$ = 1.0 s, and so on. Its displacement at times other than those listed in the table can be read from the graph; furthermore, information about its velocity and acceleration can also be obtained from the graph.

## Determining average velocity from a graph of displacement versus time: jet car

Find the average velocity of the car whose position is graphed in [link] .

Strategy

The slope of a graph of $x$ vs. $t$ is average velocity, since slope equals rise over run. In this case, rise = change in displacement and run = change in time, so that

$\text{slope}=\frac{\Delta x}{\Delta t}=\stackrel{-}{v}.$

Since the slope is constant here, any two points on the graph can be used to find the slope. (Generally speaking, it is most accurate to use two widely separated points on the straight line. This is because any error in reading data from the graph is proportionally smaller if the interval is larger.)

Solution

1. Choose two points on the line. In this case, we choose the points labeled on the graph: (6.4 s, 2000 m) and (0.50 s, 525 m). (Note, however, that you could choose any two points.)

2. Substitute the $x$ and $t$ values of the chosen points into the equation. Remember in calculating change $\left(\Delta \right)$ we always use final value minus initial value.

$\stackrel{-}{v}=\frac{\Delta x}{\Delta t}=\frac{\text{2000 m}-\text{525 m}}{6\text{.}\text{4 s}-0\text{.}\text{50 s}},$

yielding

$\stackrel{-}{v}=\text{250 m/s}.$

Discussion

This is an impressively large land speed (900 km/h, or about 560 mi/h): much greater than the typical highway speed limit of 60 mi/h (27 m/s or 96 km/h), but considerably shy of the record of 343 m/s (1234 km/h or 766 mi/h) set in 1997.

an 8.0 capacitor is connected by to the terminals of 60Hz whoes rms voltage is 150v. a.find the capacity reactance and rms to the circuit
thanks so much. i undersooth well
what is physics
is the study of matter in relation to energy
Kintu
a submersible pump is dropped a borehole and hits the level of water at the bottom of the borehole 5 seconds later.determine the level of water in the borehole
what is power?
power P = Work done per second W/ t. It means the more power, the stronger machine
Sphere
e.g. heart Uses 2 W per beat.
Rohit
A spherica, concave shaving mirror has a radius of curvature of 32 cm .what is the magnification of a persons face. when it is 12cm to the left of the vertex of the mirror
did you solve?
Shii
1.75cm
Ridwan
my name is Abu m.konnek I am a student of a electrical engineer and I want you to help me
Abu
the magnification k = f/(f-d) with focus f = R/2 =16 cm; d =12 cm k = 16/4 =4
Sphere
A weather vane is some sort of directional arrow parallel to the ground that may rotate freely in a horizontal plane. A typical weather vane has a large cross-sectional area perpendicular to the direction the arrow is pointing, like a “One Way” street sign. The purpose of the weather vane is to indicate the direction of the wind. As wind blows pa
hi
Godfred
Godfred
If a prism is fully imersed in water then the ray of light will normally dispersed or their is any difference?
the same behavior thru the prism out or in water bud abbot
Ju
If this will experimented with a hollow(vaccum) prism in water then what will be result ?
Anurag
What was the previous far point of a patient who had laser correction that reduced the power of her eye by 7.00 D, producing a normal distant vision power of 50.0 D for her?
What is the far point of a person whose eyes have a relaxed power of 50.5 D?
Jaydie
What is the far point of a person whose eyes have a relaxed power of 50.5 D?
Jaydie
A young woman with normal distant vision has a 10.0% ability to accommodate (that is, increase) the power of her eyes. What is the closest object she can see clearly?
Jaydie
29/20 ? maybes
Ju
In what ways does physics affect the society both positively or negatively
how can I read physics...am finding it difficult to understand...pls help
try to read several books on phy don't just rely one. some authors explain better than other.
Ju
And don't forget to check out YouTube videos on the subject. Videos offer a different visual way to learn easier.
Ju
hope that helps
Ju
I have a exam on 12 february
what is velocity
Jiti
the speed of something in a given direction.
Ju
what is a magnitude in physics
Propose a force standard different from the example of a stretched spring discussed in the text. Your standard must be capable of producing the same force repeatedly.
What is meant by dielectric charge? By By  By Sam Luong   By     By