# 7.2 Kinetic energy and the work-energy theorem  (Page 3/7)

 Page 3 / 7

## Determining the work to accelerate a package

Suppose that you push on the 30.0-kg package in [link] with a constant force of 120 N through a distance of 0.800 m, and that the opposing friction force averages 5.00 N.

(a) Calculate the net work done on the package. (b) Solve the same problem as in part (a), this time by finding the work done by each force that contributes to the net force.

Strategy and Concept for (a)

This is a motion in one dimension problem, because the downward force (from the weight of the package) and the normal force have equal magnitude and opposite direction, so that they cancel in calculating the net force, while the applied force, friction, and the displacement are all horizontal. (See [link] .) As expected, the net work is the net force times distance.

Solution for (a)

The net force is the push force minus friction, or ${F}_{\text{net}}\text{= 120 N – 5}\text{.}\text{00 N = 115 N}$ . Thus the net work is

$\begin{array}{lll}{W}_{\text{net}}& =& {F}_{\text{net}}d=\left(\text{115 N}\right)\left(\text{0.800 m}\right)\\ & =& \text{92.0 N}\cdot m=\text{92.0 J.}\end{array}$

Discussion for (a)

This value is the net work done on the package. The person actually does more work than this, because friction opposes the motion. Friction does negative work and removes some of the energy the person expends and converts it to thermal energy. The net work equals the sum of the work done by each individual force.

Strategy and Concept for (b)

The forces acting on the package are gravity, the normal force, the force of friction, and the applied force. The normal force and force of gravity are each perpendicular to the displacement, and therefore do no work.

Solution for (b)

The applied force does work.

$\begin{array}{lll}{W}_{\text{app}}& =& {F}_{\text{app}}d\phantom{\rule{0.25em}{0ex}}\text{cos}\left(0º\right)={F}_{\text{app}}d\\ & =& \left(\text{120 N}\right)\left(\text{0.800 m}\right)\\ & =& \text{96.0 J}\end{array}$

The friction force and displacement are in opposite directions, so that $\theta =\text{180º}$ , and the work done by friction is

$\begin{array}{lll}{W}_{\text{fr}}& =& {F}_{\text{fr}}d\phantom{\rule{0.25em}{0ex}}\text{cos}\left(\text{180º}\right)=-{F}_{\text{fr}}d\\ & =& -\left(\text{5.00 N}\right)\left(\text{0.800 m}\right)\\ & =& -\text{4.00 J.}\end{array}$

So the amounts of work done by gravity, by the normal force, by the applied force, and by friction are, respectively,

$\begin{array}{lll}{W}_{\text{gr}}& =& 0,\\ {W}_{N}& =& 0,\\ {W}_{\text{app}}& =& \text{96.0 J,}\\ {W}_{\text{fr}}& =& -\text{4.00 J.}\end{array}$

The total work done as the sum of the work done by each force is then seen to be

${W}_{\text{total}}={W}_{\text{gr}}+{W}_{N}+{W}_{\text{app}}+{W}_{\text{fr}}=\text{92}\text{.0 J}.$

Discussion for (b)

The calculated total work ${W}_{\text{total}}$ as the sum of the work by each force agrees, as expected, with the work ${W}_{\text{net}}$ done by the net force. The work done by a collection of forces acting on an object can be calculated by either approach.

## Determining speed from work and energy

Find the speed of the package in [link] at the end of the push, using work and energy concepts.

Strategy

Here the work-energy theorem can be used, because we have just calculated the net work, ${W}_{\text{net}}$ , and the initial kinetic energy, $\frac{1}{2}{m{v}_{0}}^{2}$ . These calculations allow us to find the final kinetic energy, $\frac{1}{2}{\text{mv}}^{2}$ , and thus the final speed $v$ .

Solution

The work-energy theorem in equation form is

${W}_{\text{net}}=\frac{1}{2}{\text{mv}}^{2}-\frac{1}{2}{m{v}_{0}}^{2}\text{.}$

Solving for $\frac{1}{2}{\text{mv}}^{2}$ gives

$\frac{1}{2}{\text{mv}}^{\text{2}}={W}_{\text{net}}+\frac{1}{2}{m{v}_{0}}^{2}\text{.}$

Thus,

$\frac{1}{2}{\text{mv}}^{2}=\text{92}\text{.}0 J+3\text{.}\text{75 J}=\text{95.}\text{75 J.}$

Solving for the final speed as requested and entering known values gives

$\begin{array}{lll}v& =& \sqrt{\frac{2\text{(95.75 J)}}{m}}=\sqrt{\frac{\text{191.5 kg}\cdot {m}^{2}{\text{/s}}^{2}}{\text{30.0 kg}}}\\ & =& \text{2.53 m/s.}\end{array}$

Discussion

Using work and energy, we not only arrive at an answer, we see that the final kinetic energy is the sum of the initial kinetic energy and the net work done on the package. This means that the work indeed adds to the energy of the package.

how many subject is in physics
the write question should be " How many Topics are in O- Level Physics, or other branches of physics.
effiom
how many topic are in physics
Praise
yh I need someone to explain something im tryna solve . I'll send the question if u down for it
a ripple tank experiment a vibrating plane is used to generate wrinkles in the water .if the distance between two successive point is 3.5cm and the wave travel a distance of 31.5cm find the frequency of the vibration
Tamdy
the range of objects and phenomena studied in physics is
what is Linear motion
straight line motion is called linear motion
then what
Amera
linear motion is a motion in a line, be it in a straight line or in a non straight line. It is the rate of change of distance.
Saeedul
Hi
aliyu
Richard
Linear motion is a one-dimensional motion along a straight line, and can therefore be described mathematically using only one spatial dimension
Jason
is a one-dimensional motion along a straight line, and can therefore be described mathematically using only one spatial dimensions.
Praise
what is a classical electrodynamics?
Marga
what is dynamics
Marga
dynamic is the force that stimulates change or progress within the system or process
Oze
what is the formula to calculate wavelength of the incident light
if a spring is is stiffness of 950nm-1 what work will be done in extending the spring by 60mmp
State the forms of energy
machanical
Ridwan
Word : Mechanical wave Definition : The waves, which need a material medium for their propagation, e.g., Sound waves. \n\nOther Definition: The waves, which need a material medium for their propagation, are called mechanical waves. Mechanical waves are also called elastic waves. Sound waves, water waves are examples of mechanical waves.t Definition: wave consisting of periodic motion of matter; e.g. sound wave or water wave as opposed to electromagnetic wave.h
correct
Akinpelu
what is mechanical wave
a wave which require material medium for its propagation
syed
The S.I unit for power is what?
watt
Okoli
Am I correct
Okoli
it can be in kilowatt, megawatt and so
Femi
yes
Femi
correct
Jaheim
kW
Akinpelu
OK that's right
Samuel
SI.unit of power is.watt=j/c.but kw.and Mw are bigger.umots
syed
What is physics
study of matter and its nature
Akinpelu
The word physics comes from a Greek word Physicos which means Nature.The Knowledge of Nature. It is branch of science which deals with the matter and energy and interaction between them.
Uniform
why in circular motion, a tangential acceleration can change the magnitude of the velocity but not its direction
reasonable
Femi
because it is balanced by the inward acceleration otherwise known as centripetal acceleration
MUSTAPHA
What is a wave
Tramsmission of energy through a media
Mateo
is the disturbance that carry materials as propagation from one medium to another
Akinpelu
mistakes thanks
Akinpelu
find the triple product of (A*B).C given that A =i + 4j, B=2i - 3j and C = i + k
Difference between north seeking pole and south seeking pole