# 32.3 Therapeutic uses of ionizing radiation  (Page 3/5)

 Page 3 / 5

## Conceptual questions

Radiotherapy is more likely to be used to treat cancer in elderly patients than in young ones. Explain why. Why is radiotherapy used to treat young people at all?

## Problems&Exercises

A beam of 168-MeV nitrogen nuclei is used for cancer therapy. If this beam is directed onto a 0.200-kg tumor and gives it a 2.00-Sv dose, how many nitrogen nuclei were stopped? (Use an RBE of 20 for heavy ions.)

$7.44×{\text{10}}^{8}$

(a) If the average molecular mass of compounds in food is 50.0 g, how many molecules are there in 1.00 kg of food? (b) How many ion pairs are created in 1.00 kg of food, if it is exposed to 1000 Sv and it takes 32.0 eV to create an ion pair? (c) Find the ratio of ion pairs to molecules. (d) If these ion pairs recombine into a distribution of 2000 new compounds, how many parts per billion is each?

Calculate the dose in Sv to the chest of a patient given an x-ray under the following conditions. The x-ray beam intensity is $\text{1.50 W}{\text{/m}}^{2}$ , the area of the chest exposed is $\text{0.0750}\phantom{\rule{0.25em}{0ex}}{\text{m}}^{2}$ , 35.0% of the x-rays are absorbed in 20.0 kg of tissue, and the exposure time is 0.250 s.

$4.92×{10}^{–4}\phantom{\rule{0.25em}{0ex}}\text{Sv}$

(a) A cancer patient is exposed to $\gamma$ rays from a 5000-Ci ${}^{60}\text{Co}$ transillumination unit for 32.0 s. The $\gamma$ rays are collimated in such a manner that only 1.00% of them strike the patient. Of those, 20.0% are absorbed in a tumor having a mass of 1.50 kg. What is the dose in rem to the tumor, if the average $\gamma$ energy per decay is 1.25 MeV? None of the $\beta$ s from the decay reach the patient. (b) Is the dose consistent with stated therapeutic doses?

What is the mass of ${}^{60}\text{Co}$ in a cancer therapy transillumination unit containing 5.00 kCi of ${}^{60}\text{Co}$ ?

4.43 g

Large amounts of ${}^{65}\text{Zn}$ are produced in copper exposed to accelerator beams. While machining contaminated copper, a physicist ingests $50.0 \mu Ci$ of ${}^{65}\text{Zn}$ . Each ${}^{65}\text{Zn}$ decay emits an average $\gamma$ -ray energy of 0.550 MeV, 40.0% of which is absorbed in the scientist’s 75.0-kg body. What dose in mSv is caused by this in one day?

Naturally occurring ${}^{\text{40}}\text{K}$ is listed as responsible for 16 mrem/y of background radiation. Calculate the mass of ${}^{\text{40}}\text{K}$ that must be inside the 55-kg body of a woman to produce this dose. Each ${}^{\text{40}}\text{K}$ decay emits a 1.32-MeV $\beta$ , and 50% of the energy is absorbed inside the body.

0.010 g

(a) Background radiation due to ${}^{226}\text{Ra}$ averages only 0.01 mSv/y, but it can range upward depending on where a person lives. Find the mass of ${}^{226}\text{Ra}$ in the 80.0-kg body of a man who receives a dose of 2.50-mSv/y from it, noting that each ${}^{226}\text{Ra}$ decay emits a 4.80-MeV $\alpha$ particle. You may neglect dose due to daughters and assume a constant amount, evenly distributed due to balanced ingestion and bodily elimination. (b) Is it surprising that such a small mass could cause a measurable radiation dose? Explain.

The annual radiation dose from ${}^{14}\text{C}$ in our bodies is 0.01 mSv/y. Each ${}^{14}\text{C}$ decay emits a ${\beta }^{–}$ averaging 0.0750 MeV. Taking the fraction of ${}^{14}\text{C}$ to be $1.3×{10}^{–12}\phantom{\rule{0.25em}{0ex}}\text{N}$ of normal ${}^{12}\text{C}$ , and assuming the body is 13% carbon, estimate the fraction of the decay energy absorbed. (The rest escapes, exposing those close to you.)

95%

If everyone in Australia received an extra 0.05 mSv per year of radiation, what would be the increase in the number of cancer deaths per year? (Assume that time had elapsed for the effects to become apparent.) Assume that there are $\text{200}×{\text{10}}^{-4}$ deaths per Sv of radiation per year. What percent of the actual number of cancer deaths recorded is this?

How is the de Broglie wavelength of electrons related to the quantization of their orbits in atoms and molecules?
How do you convert 0.0045kgcmÂ³ to the si unit?
how many state of matter do we really have like I mean... is there any newly discovered state of matter?
I only know 5: •Solids •Liquids •Gases •Plasma •Bose-Einstein condensate
Thapelo
Alright Thank you
Falana
Which one is the Bose-Einstein
James
can you explain what plasma and the I her one you mentioned
Olatunde
u can say sun or stars are just the state of plasma
Mohit
but the are more than seven
Issa
what the meaning of continuum
What state of matter is fire
fire is not in any state of matter...fire is rather a form of energy produced from an oxidising reaction.
Xenda
Isn`t fire the plasma state of matter?
Walter
all this while I taught it was plasma
Victor
How can you define time?
Time can be defined as a continuous , dynamic , irreversible , unpredictable quantity .
Tanaya
unpredictable? but I can say after one o'clock its going to be two o'clock predictably!
Victor
what is the relativity of physics
How do you convert 0.0045kgcm³ to the si unit?
flint
What is the formula for motion
V=u+at V²=u²-2as
flint
S=ut+½at
flint
they are eqns of linear motion
King
S=Vt
Thapelo
v=u+at s=ut+at^\2 v^=u^+2as where ^=2
King
hi
hello
King
Explain dopplers effect
Not yet learnt
Bob
Explain motion with types
Bob
Acceleration is the change in velocity over time. Given this information, is acceleration a vector or a scalar quantity? Explain.
Scalar quantity Because acceleration has only magnitude
Bob
acleration is vectr quatity it is found in a spefied direction and it is product of displcemnt
bhat
its a scalar quantity
Paul
velocity is speed and direction. since velocity is a part of acceleration that makes acceleration a vector quantity. an example of this is centripetal acceleration. when you're moving in a circular patter at a constant speed, you are still accelerating because your direction is constantly changing.
Josh
acceleration is a vector quantity. As explained by Josh Thompson, even in circular motion, bodies undergoing circular motion only accelerate because on the constantly changing direction of their constant speed. also retardation and acceleration are differentiated by virtue of their direction in
fitzgerald
respect to prevailing force
fitzgerald
What is the difference between impulse and momentum?
Manyo
Momentum is the product of the mass of a body and the change in velocity of its motion. ie P=m(v-u)/t (SI unit is kgm/s). it is literally the impact of collision from a moving body. While Impulse is the product of momentum and time. I = Pt (SI unit is kgm) or it is literally the change in momentum
fitzgerald
Or I = m(v-u)
fitzgerald
the tendency of a body to maintain it's inertia motion is called momentum( I believe you know what inertia means) so for a body to be in momentum it will be really hard to stop such body or object..... this is where impulse comes in.. the force applied to stop the momentum of such body is impulse..
Pelumi
Calculation of kinetic and potential energy
K.e=mv² P.e=mgh
Malia
K is actually 1/2 mv^2
Josh
what impulse is given to an a-particle of mass 6.7*10^-27 kg if it is ejected from a stationary nucleus at a speed of 3.2*10^-6ms²? what average force is needed if it is ejected in approximately 10^-8 s?
John
speed=velocity÷time velocity=speed×time=3.2×10^-6×10^-8=32×10^-14m/s impulse [I]=∆momentum[P]=mass×velocity=6.7×10^-27×32×10^-14=214.4×10^-41kg/ms force=impulse÷time=214.4×10^-41÷10^-8=214.4×10^-33N. dats how I solved it.if wrong pls correct me.
Melody
what is sound wave
sound wave is a mechanical longitudinal wave that transfers energy from one point to another
Ogor
its a longitudnal wave which is associted wth compresion nad rearfractions
bhat
what is power
it's also a capability to do something or act in a particular way.
Kayode
Newton laws of motion
Mike
power also known as the rate of ability to do work
Slim
power means capabilty to do work p=w/t its unit is watt or j/s it also represents how much work is done fr evry second
bhat
what does fluorine do?
strengthen and whiten teeth.
Gia
a simple pendulum make 50 oscillation in 1minute, what is it period of oscillation?
length of pendulm?
bhat