16.5 Energy and the simple harmonic oscillator  (Page 2/2)

 Page 2 / 2

A similar calculation for the simple pendulum produces a similar result, namely:

${\omega }_{\text{max}}=\sqrt{\frac{g}{L}}{\theta }_{\text{max}}.$

Determine the maximum speed of an oscillating system: a bumpy road

Suppose that a car is 900 kg and has a suspension system that has a force constant $k=6\text{.}\text{53}×{\text{10}}^{4}\phantom{\rule{0.25em}{0ex}}\text{N/m}$ . The car hits a bump and bounces with an amplitude of 0.100 m. What is its maximum vertical velocity if you assume no damping occurs?

Strategy

We can use the expression for ${v}_{\text{max}}$ given in ${v}_{\text{max}}=\sqrt{\frac{k}{m}}X$ to determine the maximum vertical velocity. The variables $m$ and $k$ are given in the problem statement, and the maximum displacement $X$ is 0.100 m.

Solution

1. Identify known.
2. Substitute known values into ${v}_{\text{max}}=\sqrt{\frac{k}{m}}X$ :
${v}_{\text{max}}=\sqrt{\frac{6\text{.}\text{53}×{\text{10}}^{4}\phantom{\rule{0.25em}{0ex}}\text{N/m}}{\text{900}\phantom{\rule{0.25em}{0ex}}\text{kg}}}\left(0\text{.}\text{100}\phantom{\rule{0.25em}{0ex}}\text{m)}.$
3. Calculate to find ${v}_{\text{max}}\text{= 0.852 m/s}.$

Discussion

This answer seems reasonable for a bouncing car. There are other ways to use conservation of energy to find ${v}_{\text{max}}$ . We could use it directly, as was done in the example featured in Hooke’s Law: Stress and Strain Revisited .

The small vertical displacement $y$ of an oscillating simple pendulum, starting from its equilibrium position, is given as

$y\left(t\right)=a\phantom{\rule{0.25em}{0ex}}\text{sin}\phantom{\rule{0.25em}{0ex}}\mathrm{\omega t},$

where $a$ is the amplitude, $\omega$ is the angular velocity and $t$ is the time taken. Substituting $\omega =\frac{2\pi }{T}$ , we have

$yt=a\phantom{\rule{0.25em}{0ex}}\text{sin}\left(\frac{2\pi t}{T}\right).$

Thus, the displacement of pendulum is a function of time as shown above.

Also the velocity of the pendulum is given by

$v\left(t\right)=\frac{2\mathrm{a\pi }}{T}\phantom{\rule{0.25em}{0ex}}\text{cos}\phantom{\rule{0.25em}{0ex}}\left(\frac{2\pi t}{T}\right),$

so the motion of the pendulum is a function of time.

Why does it hurt more if your hand is snapped with a ruler than with a loose spring, even if the displacement of each system is equal?

The ruler is a stiffer system, which carries greater force for the same amount of displacement. The ruler snaps your hand with greater force, which hurts more.

You are observing a simple harmonic oscillator. Identify one way you could decrease the maximum velocity of the system.

You could increase the mass of the object that is oscillating.

Section summary

• Energy in the simple harmonic oscillator is shared between elastic potential energy and kinetic energy, with the total being constant:
$\frac{1}{2}{\text{mv}}^{2}+\frac{1}{2}{\text{kx}}^{2}=\text{constant.}$
• Maximum velocity depends on three factors: it is directly proportional to amplitude, it is greater for stiffer systems, and it is smaller for objects that have larger masses:
${v}_{\text{max}}=\sqrt{\frac{k}{m}}X.$

Conceptual questions

Explain in terms of energy how dissipative forces such as friction reduce the amplitude of a harmonic oscillator. Also explain how a driving mechanism can compensate. (A pendulum clock is such a system.)

Problems&Exercises

The length of nylon rope from which a mountain climber is suspended has a force constant of $1\text{.}\text{40}×{\text{10}}^{4}\phantom{\rule{0.25em}{0ex}}\text{N/m}$ .

(a) What is the frequency at which he bounces, given his mass plus and the mass of his equipment are 90.0 kg?

(b) How much would this rope stretch to break the climber’s fall if he free-falls 2.00 m before the rope runs out of slack? Hint: Use conservation of energy.

(c) Repeat both parts of this problem in the situation where twice this length of nylon rope is used.

(a) $\text{1.99 Hz}$

(b) 50.2 cm

(c) 1.41 Hz, 0.710 m

Engineering Application

Near the top of the Citigroup Center building in New York City, there is an object with mass of $4\text{.}\text{00}×{\text{10}}^{5}\phantom{\rule{0.25em}{0ex}}\text{kg}$ on springs that have adjustable force constants. Its function is to dampen wind-driven oscillations of the building by oscillating at the same frequency as the building is being driven—the driving force is transferred to the object, which oscillates instead of the entire building. (a) What effective force constant should the springs have to make the object oscillate with a period of 2.00 s? (b) What energy is stored in the springs for a 2.00-m displacement from equilibrium?

(a) $3\text{.}\text{95}×{\text{10}}^{6}\phantom{\rule{0.25em}{0ex}}\text{N/m}$

(b) $7\text{.}\text{90}×{\text{10}}^{6}\phantom{\rule{0.25em}{0ex}}\text{J}$

the meaning of phrase in physics
is the meaning of phrase in physics
Chovwe
write an expression for a plane progressive wave moving from left to right along x axis and having amplitude 0.02m, frequency of 650Hz and speed if 680ms-¹
how does a model differ from a theory
To use the vocabulary of model theory and meta-logic, a theory is a set of sentences which can be derived from a formal model using some rule of inference (usually just modus ponens). So, for example, Number Theory is the set of sentences true about numbers. But the model is a structure together wit
Jesilda
with an iterpretation.
Jesilda
what is vector quantity
Vector quality have both direction and magnitude, such as Force, displacement, acceleration and etc.
Besmellah
Is the force attractive or repulsive between the hot and neutral lines hung from power poles? Why?
what's electromagnetic induction
electromagnetic induction is a process in which conductor is put in a particular position and magnetic field keeps varying.
Lukman
wow great
Salaudeen
what is mutual induction?
je
mutual induction can be define as the current flowing in one coil that induces a voltage in an adjacent coil.
Johnson
how to undergo polarization
show that a particle moving under the influence of an attractive force mu/y³ towards the axis x. show that if it be projected from the point (0,k) with the component velocities U and V parallel to the axis of x and y, it will not strike the axis of x unless u>v²k² and distance uk²/√u-vk as origin
show that a particle moving under the influence of an attractive force mu/y^3 towards the axis x. show that if it be projected from the point (0,k) with the component velocities U and V parallel to the axis of x and y, it will not strike the axis of x unless u>v^2k^2 and distance uk^2/√u-k as origin
No idea.... Are you even sure this question exist?
Mavis
I can't even understand the question
yes it was an assignment question "^"represent raise to power pls
Gabriel
Gabriel
An engineer builds two simple pendula. Both are suspended from small wires secured to the ceiling of a room. Each pendulum hovers 2 cm above the floor. Pendulum 1 has a bob with a mass of 10kg . Pendulum 2 has a bob with a mass of 100 kg . Describe how the motion of the pendula will differ if the bobs are both displaced by 12º .
no ideas
Augstine
if u at an angle of 12 degrees their period will be same so as their velocity, that means they both move simultaneously since both both hovers at same length meaning they have the same length
Modern cars are made of materials that make them collapsible upon collision. Explain using physics concept (Force and impulse), how these car designs help with the safety of passengers.
calculate the force due to surface tension required to support a column liquid in a capillary tube 5mm. If the capillary tube is dipped into a beaker of water
find the time required for a train Half a Kilometre long to cross a bridge almost kilometre long racing at 100km/h
method of polarization
Ajayi
What is atomic number?
The number of protons in the nucleus of an atom
Deborah
type of thermodynamics
oxygen gas contained in a ccylinder of volume has a temp of 300k and pressure 2.5×10Nm