<< Chapter < Page Chapter >> Page >

To see how and why this happens, consider the charged conductor in [link] . The electrostatic repulsion of like charges is most effective in moving them apart on the flattest surface, and so they become least concentrated there. This is because the forces between identical pairs of charges at either end of the conductor are identical, but the components of the forces parallel to the surfaces are different. The component parallel to the surface is greatest on the flattest surface and, hence, more effective in moving the charge.

The same effect is produced on a conductor by an externally applied electric field, as seen in [link] (c). Since the field lines must be perpendicular to the surface, more of them are concentrated on the most curved parts.

In part a, a conductor is shown with the unsymmetrical shape. The identical pair of charges at opposite ends on the conductor have similar components of forces represented by arrows. In part b, the unsymmetrical object has positive charge on its surface. The electric field lines are shown emerging perpendicular from the surface of the conductor represented by vector arrow. In part c, the field lines in and around the conductor running from left to right is shown. The left surface of the conductor has negative charge and the right surface has positive charge. The field lines enter and leave the conductor at right angles.
Excess charge on a nonuniform conductor becomes most concentrated at the location of greatest curvature. (a) The forces between identical pairs of charges at either end of the conductor are identical, but the components of the forces parallel to the surface are different. It is F size 12{F rSub { size 8{ \rdline } } } {} that moves the charges apart once they have reached the surface. (b) F size 12{F rSub { size 8{ \rdline } } } {} is smallest at the more pointed end, the charges are left closer together, producing the electric field shown. (c) An uncharged conductor in an originally uniform electric field is polarized, with the most concentrated charge at its most pointed end.

Applications of conductors

On a very sharply curved surface, such as shown in [link] , the charges are so concentrated at the point that the resulting electric field can be great enough to remove them from the surface. This can be useful.

Lightning rods work best when they are most pointed. The large charges created in storm clouds induce an opposite charge on a building that can result in a lightning bolt hitting the building. The induced charge is bled away continually by a lightning rod, preventing the more dramatic lightning strike.

Of course, we sometimes wish to prevent the transfer of charge rather than to facilitate it. In that case, the conductor should be very smooth and have as large a radius of curvature as possible. (See [link] .) Smooth surfaces are used on high-voltage transmission lines, for example, to avoid leakage of charge into the air.

Another device that makes use of some of these principles is a Faraday cage    . This is a metal shield that encloses a volume. All electrical charges will reside on the outside surface of this shield, and there will be no electrical field inside. A Faraday cage is used to prohibit stray electrical fields in the environment from interfering with sensitive measurements, such as the electrical signals inside a nerve cell.

During electrical storms if you are driving a car, it is best to stay inside the car as its metal body acts as a Faraday cage with zero electrical field inside. If in the vicinity of a lightning strike, its effect is felt on the outside of the car and the inside is unaffected, provided you remain totally inside. This is also true if an active (“hot”) electrical wire was broken (in a storm or an accident) and fell on your car.

Questions & Answers

Wheatstone bridge problems
Sonali Reply
what is motion
Ali Reply
When a body changes its position with respect to its surroundings then it is said to be in motion
Jon
it is a change in position, direction, shape and arrangement of a body or an object which is initially at rest
Abolarin
Pls guys am having problem on these topics: latent heat of fusion, specific heat capacity and the sub topics under them.Pls who can help?
hamidat Reply
Thanks George,I appreciate.
hamidat
this will lead you rightly of the formula to use
Abolarin
Most especially it is the calculatory aspects that is giving me issue, but with these new strength that you guys have given me,I will put in my best to understand it again.
hamidat
you can bring up a question and let's see what we can do to it
Abolarin
I also have a problem with the calculation sincerely
Sulaimon
the distance between two suasive crests of water wave traveling of 3.6ms1 is 0.45m calculate the frequency of the wave
Idris Reply
v=f×lemda where the velocity is given and lends also given so simply u can calculate the frequency
Abdul
You are right my brother, make frequency the subject of formula and equate the values of velocity and lamda into the equation, that all.
hamidat
lExplain what happens to the energy carried by light that it is dimmed by passing it through two crossed polarizing filters.
Christoper Reply
When light is reflected at Brewster's angle from a smooth surface, it is 100% polarizedparallel to the surface. Part of the light will be refracted into the surface.
Ekram
What is specific heat capacity?
hamidat Reply
Specific heat capacity is the amount of heat required to raise the temperature of one (Kg) of a substance through one Kelvin
Paluutar
formula for measuring Joules
Rowshan Reply
I don't understand, do you mean the S.I unit of work and energy?
hamidat
what are the effects of electric current
ADAMS Reply
What limits the Magnification of an optical instrument?
Naeem Reply
Lithography is 2 micron
Venkateshwarlu
what is expression for energy possessed by water ripple
Prabesh Reply
what is hydrolic press
Mark Reply
An hydraulic press is a type of machine that is operated by different pressure of water on pistons.
hamidat
what is dimensional unite of mah
Patrock Reply
i want jamb related question on this asap🙏
sharon Reply
What is Boyles law
Pascal Reply
it can simple defined as constant temperature
Muhammad
Boyles law states that the volume of a fixed amount of a gas is inversely proportional to the pressure acting on in provided that the temperature is constant.that is V=k(1/p) or V=k/p
FADILAT
what is motion
Mua Reply
getting notifications for a dictionary word, smh
Anderson
Practice Key Terms 6

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask