<< Chapter < Page Chapter >> Page >

Here, I = emf r tot + R load size 12{I= { {"emf"} over { left (r rSub { size 8{"tot"} } +R rSub { size 8{"load"} } right )} } } {} flows through the load, and r tot size 12{r rSub { size 8{"tot"} } } {} is less than those of the individual batteries. For example, some diesel-powered cars use two 12-V batteries in parallel; they produce a total emf of 12 V but can deliver the larger current needed to start a diesel engine.

Part a shows parallel combination of two cells of e m f script E and internal resistance r sub one and internal resistance r sub two connected to a load resistor R sub load. Part b shows the combination of e m f of part a. The circuit has a cell of e m f script E with an internal resistance r sub tot and a load resistor R sub load. The resistance r sub tot is less than either r sub one or r sub two.
Two voltage sources with identical emfs (each labeled by script E) connected in parallel produce the same emf but have a smaller total internal resistance than the individual sources. Parallel combinations are often used to deliver more current. Here I = emf r tot + R load size 12{I= { {"emf"} over { left (r rSub { size 8{"tot"} } +R rSub { size 8{"load"} } right )} } } {} flows through the load.

Animals as electrical detectors

A number of animals both produce and detect electrical signals. Fish, sharks, platypuses, and echidnas (spiny anteaters) all detect electric fields generated by nerve activity in prey. Electric eels produce their own emf through biological cells (electric organs) called electroplaques, which are arranged in both series and parallel as a set of batteries.

Electroplaques are flat, disk-like cells; those of the electric eel have a voltage of 0.15 V across each one. These cells are usually located toward the head or tail of the animal, although in the case of the electric eel, they are found along the entire body. The electroplaques in the South American eel are arranged in 140 rows, with each row stretching horizontally along the body and containing 5,000 electroplaques. This can yield an emf of approximately 600 V, and a current of 1 A—deadly.

The mechanism for detection of external electric fields is similar to that for producing nerve signals in the cell through depolarization and repolarization—the movement of ions across the cell membrane. Within the fish, weak electric fields in the water produce a current in a gel-filled canal that runs from the skin to sensing cells, producing a nerve signal. The Australian platypus, one of the very few mammals that lay eggs, can detect fields of 30 mV m size 12{ { {"mV"} over {m} } } {} , while sharks have been found to be able to sense a field in their snouts as small as 100 mV m size 12{ { {"mV"} over {m} } } {} ( [link] ). Electric eels use their own electric fields produced by the electroplaques to stun their prey or enemies.

A photograph of a large gray tiger shark that swims along the bottom of a saltwater tank full of smaller fish at the Minnesota Zoo.
Sand tiger sharks ( Carcharias taurus ), like this one at the Minnesota Zoo, use electroreceptors in their snouts to locate prey. (credit: Jim Winstead, Flickr)

Solar cell arrays

Another example dealing with multiple voltage sources is that of combinations of solar cells—wired in both series and parallel combinations to yield a desired voltage and current. Photovoltaic generation (PV), the conversion of sunlight directly into electricity, is based upon the photoelectric effect, in which photons hitting the surface of a solar cell create an electric current in the cell.

Most solar cells are made from pure silicon—either as single-crystal silicon, or as a thin film of silicon deposited upon a glass or metal backing. Most single cells have a voltage output of about 0.5 V, while the current output is a function of the amount of sunlight upon the cell (the incident solar radiation—the insolation). Under bright noon sunlight, a current of about 100 mA/cm 2 size 12{"100"" mA/cm" rSup { size 8{2} } } {} of cell surface area is produced by typical single-crystal cells.

Questions & Answers

what is physics
faith Reply
what are the basic of physics
tree physical properties of heat
Bello Reply
tree is a type of organism that grows very tall and have a wood trunk and branches with leaves... how is that related to heat? what did you smoke man?
what are the uses of dimensional analysis
Racheal Reply
Dimensional Analysis. The study of relationships between physical quantities with the help of their dimensions and units of measurements is called dimensional analysis. We use dimensional analysis in order to convert a unit from one form to another.
meaning of OE and making of the subscript nc
ferunmi Reply
can I ask a question
kinetic functional force
Moyagabo Reply
what is a principal wave?
Haider Reply
A wave the movement of particles on rest position transferring energy from one place to another
not wave. i need to know principal wave or waves.
principle wave is a superposition of wave when two or more waves meet at a point , whose amplitude is the algebraic sum of the amplitude of the waves
kindly define principal wave not principle wave (principle of super position) if u can understand my question
what is a model?
Ella Reply
why are electros emitted only when the frequency of the incident radiation is greater than a certain value
b/c u have to know that for emission of electron need specific amount of energy which are gain by electron for emission . if incident rays have that amount of energy electron can be emitted, otherwise no way.
search photoelectric effect on Google
what is ohm's law
Pamilerin Reply
states that electric current in a given metallic conductor is directly proportional to the potential difference applied between its end, provided that the temperature of the conductor and other physical factors such as length and cross-sectional area remains constant. mathematically V=IR
A body travelling at a velocity of 30ms^-1 in a straight line is brought to rest by application of brakes. if it covers a distance of 100m during this period, find the retardation.
Pamilerin Reply
just use v^2-u^2=2as
how often does electrolyte emits?
just use +€^3.7°√π%-4¢•∆¥%
v^2-u^2=2as v=0,u=30,s=100 -30^2=2a*100 -900=200a a=-900/200 a=-4.5m/s^2
what is distribution of trade
Grace Reply
what's acceleration
Joshua Reply
The change in position of an object with respect to time
Acceleration is velocity all over time
It's not It's the change of velocity relative to time
Velocity is the change of position relative to time
acceleration it is the rate of change in velocity with time
acceleration is change in velocity per rate of time
what is ohm's law
Ohm's law is related to resistance by which volatge is the multiplication of current and resistance ( U=RI)
acceleration is the rate of change. of displacement with time.
the rate of change of velocity is called acceleration
how i don understand
Willam Reply
how do I access the Multiple Choice Questions? the button never works and the essay one doesn't either
Savannah Reply
How do you determine the magnitude of force
Peace Reply
mass × acceleration OR Work done ÷ distance
Practice Key Terms 4

Get the best College physics course in your pocket!

Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?