<< Chapter < Page Chapter >> Page >

Here, I = emf r tot + R load size 12{I= { {"emf"} over { left (r rSub { size 8{"tot"} } +R rSub { size 8{"load"} } right )} } } {} flows through the load, and r tot size 12{r rSub { size 8{"tot"} } } {} is less than those of the individual batteries. For example, some diesel-powered cars use two 12-V batteries in parallel; they produce a total emf of 12 V but can deliver the larger current needed to start a diesel engine.

Part a shows parallel combination of two cells of e m f script E and internal resistance r sub one and internal resistance r sub two connected to a load resistor R sub load. Part b shows the combination of e m f of part a. The circuit has a cell of e m f script E with an internal resistance r sub tot and a load resistor R sub load. The resistance r sub tot is less than either r sub one or r sub two.
Two voltage sources with identical emfs (each labeled by script E) connected in parallel produce the same emf but have a smaller total internal resistance than the individual sources. Parallel combinations are often used to deliver more current. Here I = emf r tot + R load size 12{I= { {"emf"} over { left (r rSub { size 8{"tot"} } +R rSub { size 8{"load"} } right )} } } {} flows through the load.

Animals as electrical detectors

A number of animals both produce and detect electrical signals. Fish, sharks, platypuses, and echidnas (spiny anteaters) all detect electric fields generated by nerve activity in prey. Electric eels produce their own emf through biological cells (electric organs) called electroplaques, which are arranged in both series and parallel as a set of batteries.

Electroplaques are flat, disk-like cells; those of the electric eel have a voltage of 0.15 V across each one. These cells are usually located toward the head or tail of the animal, although in the case of the electric eel, they are found along the entire body. The electroplaques in the South American eel are arranged in 140 rows, with each row stretching horizontally along the body and containing 5,000 electroplaques. This can yield an emf of approximately 600 V, and a current of 1 A—deadly.

The mechanism for detection of external electric fields is similar to that for producing nerve signals in the cell through depolarization and repolarization—the movement of ions across the cell membrane. Within the fish, weak electric fields in the water produce a current in a gel-filled canal that runs from the skin to sensing cells, producing a nerve signal. The Australian platypus, one of the very few mammals that lay eggs, can detect fields of 30 mV m size 12{ { {"mV"} over {m} } } {} , while sharks have been found to be able to sense a field in their snouts as small as 100 mV m size 12{ { {"mV"} over {m} } } {} ( [link] ). Electric eels use their own electric fields produced by the electroplaques to stun their prey or enemies.

A photograph of a large gray tiger shark that swims along the bottom of a saltwater tank full of smaller fish at the Minnesota Zoo.
Sand tiger sharks ( Carcharias taurus ), like this one at the Minnesota Zoo, use electroreceptors in their snouts to locate prey. (credit: Jim Winstead, Flickr)

Solar cell arrays

Another example dealing with multiple voltage sources is that of combinations of solar cells—wired in both series and parallel combinations to yield a desired voltage and current. Photovoltaic generation (PV), the conversion of sunlight directly into electricity, is based upon the photoelectric effect, in which photons hitting the surface of a solar cell create an electric current in the cell.

Most solar cells are made from pure silicon—either as single-crystal silicon, or as a thin film of silicon deposited upon a glass or metal backing. Most single cells have a voltage output of about 0.5 V, while the current output is a function of the amount of sunlight upon the cell (the incident solar radiation—the insolation). Under bright noon sunlight, a current of about 100 mA/cm 2 size 12{"100"" mA/cm" rSup { size 8{2} } } {} of cell surface area is produced by typical single-crystal cells.

Questions & Answers

the definition of photon
Bright Reply
8kg of a hot liquid initial T is 90°© is missed with another liquid 3kg at 20° calculate e équilibrium T
Balki Reply
8kg of a hot liquid initial T is 90°© is missed with another liquid 3kg at 20° calculate e équilibrium T
Balki
answer plz
Bright
what are the products when acid and base mixed?
Austin
what work done
Dennis Reply
work done is the product of force and distance moved in the direction of force
Gift
Work done = force (F) * distance (D)
abdulsalam
what is resounance
Abdul
y
Tracy
explain the three laws of isaac Newton with the reference
glory Reply
1st law ; a body will continue to stay at a state of rest or continue to move at a uniform motion on a straight line unless an external force is been acted upon
Austine
3rd law; in every action there is an equal or opposite reaction
Austine
2nd law: F=ma
Austine
why am i not having access to the Link in your exemples /figures ?
Augustine Reply
what is circut
hasiya Reply
newtons law of motion
hasiya
First law:In an inertial frame of reference, an object either remains at rest or continues to move at a constant velocity, unless acted upon by a force.
Manan
is the ability to do work
Adjah Reply
Energy
Nwany
u from
Hejreen
any body online hain
Hejreen
ability to do work is energy
Irshad
what is energy
Mercy Reply
energy is ability of the capacity to doing work
shafiu
what is vector
mosco Reply
A quantity that has both magnitude and direction
Donaldo
can a body with out mass float in space
mosco
Is the quantity that has both magnitude and direction
Amoah
Yes it can float in space,e.g.polyethene has no mass that's why it can float in space
Amoah
that's my suggestion,any other explanation can be given also,thanks
Amoah
A charge of 1.6*10^-6C is placed in a uniform electric field in a density 2*5^10Nc^-1, what is the magnitude of the electric force exerted on the charge?
Omotosho Reply
what's phenomena
Enoch Reply
Phenomena is an observable fact or event.
Love
Prove that 1/d+1/v=1/f
James Reply
What interference
Moyinoluwa Reply
What is a polarized light called?
Moyinoluwa
what is a half life
Mama Reply
the time taken for a radioactive element to decay by half of its original mass
ken
what is radioactive element
mohammed
Half of the total time required by a radioactive nuclear atom to totally disintegrate
Justice
radioactive elements are those with unstable nuclei(ie have protons more than neutrons, or neutrons more than protons
Justice
in other words, the radioactive atom or elements have unequal number of protons to neutrons.
Justice
state the laws of refraction
Fabian
state laws of reflection
Fabian
Why does a bicycle rider bends towards the corner when is turning?
Mac
When do we say that the stone thrown vertically up wards accelerate negatively?
Mac
Give two importance of insulator placed between plates of a capacitor.
Mac
Macho had a shoe with a big sole moving in mudy Road, shanitah had a shoe with a small sole. Give reasons for those two cases.
Mac
when was the name taken from
Biola Reply
retardation of a car
Biola
when was the name retardation taken
Biola
did you mean a motion with velocity decreases uniformly by the time? then, the vector acceleration is opposite direction with vector velocity
Sphere
what's velocity
mosco
Velocity is the rate of change of displacement
Divya
Practice Key Terms 4

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask