<< Chapter < Page Chapter >> Page >
  • Determine the appropriate number of significant figures in both addition and subtraction, as well as multiplication and division calculations.
  • Calculate the percent uncertainty of a measurement.
An old rusted double-pan balance is shown with a weighing stone on one pan.
A double-pan mechanical balance is used to compare different masses. Usually an object with unknown mass is placed in one pan and objects of known mass are placed in the other pan. When the bar that connects the two pans is horizontal, then the masses in both pans are equal. The “known masses” are typically metal cylinders of standard mass such as 1 gram, 10 grams, and 100 grams. (credit: Serge Melki)
A digital analytical balance.
Many mechanical balances, such as double-pan balances, have been replaced by digital scales, which can typically measure the mass of an object more precisely. Whereas a mechanical balance may only read the mass of an object to the nearest tenth of a gram, many digital scales can measure the mass of an object up to the nearest thousandth of a gram. (credit: Karel Jakubec)

Accuracy and precision of a measurement

Science is based on observation and experiment—that is, on measurements. Accuracy is how close a measurement is to the correct value for that measurement. For example, let us say that you are measuring the length of standard computer paper. The packaging in which you purchased the paper states that it is 11.0 inches long. You measure the length of the paper three times and obtain the following measurements: 11.1 in., 11.2 in., and 10.9 in. These measurements are quite accurate because they are very close to the correct value of 11.0 inches. In contrast, if you had obtained a measurement of 12 inches, your measurement would not be very accurate.

The precision    of a measurement system is refers to how close the agreement is between repeated measurements (which are repeated under the same conditions). Consider the example of the paper measurements. The precision of the measurements refers to the spread of the measured values. One way to analyze the precision of the measurements would be to determine the range, or difference, between the lowest and the highest measured values. In that case, the lowest value was 10.9 in. and the highest value was 11.2 in. Thus, the measured values deviated from each other by at most 0.3 in. These measurements were relatively precise because they did not vary too much in value. However, if the measured values had been 10.9, 11.1, and 11.9, then the measurements would not be very precise because there would be significant variation from one measurement to another.

The measurements in the paper example are both accurate and precise, but in some cases, measurements are accurate but not precise, or they are precise but not accurate. Let us consider an example of a GPS system that is attempting to locate the position of a restaurant in a city. Think of the restaurant location as existing at the center of a bull’s-eye target, and think of each GPS attempt to locate the restaurant as a black dot. In [link] , you can see that the GPS measurements are spread out far apart from each other, but they are all relatively close to the actual location of the restaurant at the center of the target. This indicates a low precision, high accuracy measuring system. However, in [link] , the GPS measurements are concentrated quite closely to one another, but they are far away from the target location. This indicates a high precision, low accuracy measuring system.

Questions & Answers

Why is the sky blue...?
Star Reply
It's filtered light from the 2 forms of radiation emitted from the sun. It's mainly filtered UV rays. There's a theory titled Scatter Theory that covers this topic
Mike
A heating coil of resistance 30π is connected to a 240v supply for 5min to boil a quantity of water in a vessel of heat capacity 200jk. If the initial temperature of water is 20°c and it specific heat capacity is 4200jkgk calculate the mass of water in a vessel
fasawe Reply
A thin equi convex lens is placed on a horizontal plane mirror and a pin held 20 cm vertically above the lens concise in position with its own image the space between the undersurface of d lens and the mirror is filled with water (refractive index =1•33)and then to concise with d image d pin has to
Azummiri Reply
Be raised until its distance from d lens is 27cm find d radius of curvature
Azummiri
what happens when a nuclear bomb and atom bomb bomb explode add the same time near each other
FlAsH Reply
A monkey throws a coconut straight upwards from a coconut tree with a velocity of 10 ms-1. The coconut tree is 30 m high. Calculate the maximum height of the coconut from the top of the coconut tree? Can someone answer my question
Fatinizzah Reply
v2 =u2 - 2gh 02 =10x10 - 2x9.8xh h = 100 ÷ 19.6 answer = 30 - h.
Ramonyai
why is the north side is always referring to n side of magnetic
sam Reply
who is a nurse
Chilekwa Reply
A nurse is a person who takes care of the sick
Bukola
a nurse is also like an assistant to the doctor
Gadjawa
explain me wheatstone bridge
Malik Reply
good app
samuel
Wheatstone bridge is an instrument used to measure an unknown electrical resistance by balancing two legs of a bridge circuit, one leg of which includes the unknown component.
MUHD
Rockwell Software is Rockwell Automation’s "Retro Encabulator". Now, basically the only new principle involved is that instead of power being generated by the relative motion of conductors and fluxes, it’s produced by the modial interaction of magneto-reluctance and capacitive diractance. The origin
Chip
what refractive index
Adjah Reply
write a comprehensive note on primary colours
Harrison Reply
relationship between refractive index, angle of minimum deviation and angle of prism
Harrison
Who knows the formula for binding energy,and what each variable or notation stands for?
Agina Reply
1. A black thermocouple measures the temperature in the chamber with black walls.if the air around the thermocouple is 200 C,the walls are at 1000 C,and the heat transfer constant is 15.compute the temperature gradient
Tikiso Reply
what is the relationship between G and g
Olaiya Reply
G is the u. constant, as g stands for grav, accelerate at a discreet point
Mark
Is that all about it?
Olaiya
pls explain in details
Olaiya
G is a universal constant
Mark
g stands for the gravitational acceleration point. hope this helps you.
Mark
balloon TD is at a gravitational acceleration at a specific point
Mark
I'm sorry this doesn't take dictation very well.
Mark
Can anyone explain the Hooke's law of elasticity?
Olaiya Reply
extension of a spring is proportional to the force applied so long as the force applied does not exceed the springs capacity according to my textbook
Amber
does this help?
Amber
Yes, thanks
Olaiya
so any solid can be compressed how compressed is dependent upon how much force is applied F=deltaL
Amber
sorry, the equation is F=KdeltaL delta is the triangle symbol and L is length so the change in length is proportional to amount of Force applied I believe that is what Hookes law means. anyone catch any mistakes here please correct me :)
Amber
I think it is used only for solids and not liquids, isn't it?
Olaiya
basically as long as you dont exceed the elastic limit the object should return to it original form but if you exceed this limit the object will not return to original shape as it will break
Amber
Thanks for the explanation
Olaiya
yh, liquids don't apply here, that should be viscosity
Chiamaka
hope it helps 😅
Amber
also, an object doesnt have to break necessarily, but it will have a new form :)
Amber
Yes
Olaiya
yeah, I think it is for solids but maybe there is a variation for liquids? that I am not sure of
Amber
ok
Olaiya
good luck!
Amber
Same
Olaiya
aplease i need a help on spcific latent heat of vibrations
Bilgate
specific latent heat of vaporisation
Bilgate
how many kilometers makes a mile
Margaret Reply
about 1.6 kilometres.
Faizyab
near about 1.67 kilometers
Aakash
equal to 1.609344 kilometers.
MUHD
Practice Key Terms 6

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask