<< Chapter < Page Chapter >> Page >

Construct your own problem

These problems require students to construct the details of a problem, justify their starting assumptions, show specific steps in the problem’s solution, and finally discuss the meaning of the result. These types of problems relate well to both conceptual and analytical aspects of physics, emphasizing that physics must describe nature. Often they involve an integration of topics from more than one chapter. Unlike other problems, solutions are not provided since there is no single correct answer. Instructors should feel free to direct students regarding the level and scope of their considerations. Whether the problem is solved and described correctly will depend on initial assumptions.

Appendices

Appendix A: Atomic Masses
Appendix B: Selected Radioactive Isotopes
Appendix C: Useful Information
Appendix D: Glossary of Key Symbols and Notation

Acknowledgements

This text is based on the work completed by Dr. Paul Peter Urone in collaboration with Roger Hinrichs, Kim Dirks, and Manjula Sharma. We would like to thank the authors as well as the numerous professors (a partial list follows) who have contributed their time and energy to review and provide feedback on the manuscript. Their input has been critical in maintaining the pedagogical integrity and accuracy of the text.

Senior contributing authors

Dr. Paul Peter Urone
Dr. Roger Hinrichs, State University of New York, College at Oswego

Contributing authors

Dr. Kim Dirks, University of Auckland, New Zealand
Dr. Manjula Sharma, University of Sydney, Australia

Expert reviewers

Erik Christensen, P.E, South Florida Community College
Dr. Eric Kincanon, Gonzaga University
Dr. Douglas Ingram, Texas Christian University
Lee H. LaRue, Paris Junior College
Dr. Marc Sher, College of William and Mary
Dr. Ulrich Zurcher, Cleveland State University
Dr. Matthew Adams, Crafton Hills College, San Bernardino Community College District
Dr. Chuck Pearson, Virginia Intermont College

Our partners

Webassign

Webassign is an independent online homework and assessment system that has been available commercially since 1998. WebAssign has recently begun to support the Open Education Resource community by creating a high quality online homework solution for selected open-source textbooks, available at an affordable price to students. These question collections include randomized values and variables, immediate feedback, links to the open-source textbook, and a variety of text-specific resources and tools; as well as the same level of rigorous coding and accuracy-checking as any commercially available online homework solution supporting traditionally available textbooks.

Sapling learning

Sapling Learning provides the most effective interactive homework and instruction that improve student learning outcomes for the problem-solving disciplines. They offer an enjoyable teaching and effective learning experience that is distinctive in three important ways:

  • Ease of Use: Sapling Learning’s easy to use interface keeps students engaged in problem-solving, not struggling with the software.
  • Targeted Instructional Content: Sapling Learning increases student engagement and comprehension by delivering immediate feedback and targeted instructional content.
  • Unsurpassed Service and Support: Sapling Learning makes teaching more enjoyable by providing a dedicated Masters or PhD level colleague to service instructors’ unique needs throughout the course, including content customization.

Expert ta

Expert TA is committed to building a dynamic online homework grading software for Introductory physics classes with a comprehensive library of original content to supplement a range of texts. Expert TA provides an integrated suite that combines online homework and tutorial modes to enhance student-learning outcomes and meet physics instructors’ assessment needs. Expert TA is used by universities, community colleges, and high schools.

Questions & Answers

what is the meaning of physics
Alausa Reply
an object that has a small mass and an object has a large mase have the same momentum which has high kinetic energy
Faith Reply
The with smaller mass
Gift
how
Faith
Since you said they have the same momentum.. So meaning that there is more like an inverse proportionality in the quantities used to find the momentum. We are told that the the is a larger mass and a smaller mass., so we can conclude that the smaller mass had higher velocity as compared to other one
Gift
Mathamaticaly correct
megavado
Mathmaticaly correct :)
megavado
I have proven it by using my own values
Gift
Larger mass=4g Smaller mass=2g Momentum of both=8 Meaning V for L =2 and V for S=4 Now find there kinetic energies using the data presented
Gift
grateful soul...thanks alot
Faith
Welcome
Gift
2 stones are thrown vertically upward from the ground, one with 3 times the initial speed of the other. If the faster stone takes 10 s to return to the ground, how long will it take the slower stone to return? If the slower stone reaches a maximum height of H, how high will the faster stone go
Julliene Reply
30s
Gift
is speed the same as velocity
Faith Reply
no
Nebil
in a question i ought to find the momentum but was given just mass and speed
Faith
just multiply mass and speed then you have the magnitude of momentem
Nebil
Yes
Gift
Consider speed to be velocity
Gift
it worked our . . thanks
Faith
Distinguish between semi conductor and extrinsic conductors
Okame Reply
Suppose that a grandfather clock is running slowly; that is, the time it takes to complete each cycle is longer than it should be. Should you (@) shorten or (b) lengthen the pendulam to make the clock keep attain the preferred time?
Aj Reply
I think you shorten am not sure
Uche
shorten it, since that is practice able using the simple pendulum as experiment
Silvia
it'll always give the results needed no need to adjust the length, it is always measured by the starting time and ending time by the clock
Paul
it's not in relation to other clocks
Paul
wat is d formular for newton's third principle
Silvia
okay
Silvia
shorten the pendulum string because the difference in length affects the time of oscillation.if short , the time taken will be adjusted.but if long ,the time taken will be twice the previous cycle.
FADILAT
discuss under damped
Prince Reply
resistance of thermometer in relation to temperature
Ifeanyi Reply
how
Bernard
that resistance is not measured yet, it may be probably in the next generation of scientists
Paul
Is fundamental quantities under physical quantities?
Igwe Reply
please I didn't not understand the concept of the physical therapy
John Reply
physiotherapy - it's a practice of exercising for healthy living.
Paul
what chapter is this?
Anderson
this is not in this book, it's from other experiences.
Paul
please I have probably with calculate please can you please and help me out
John Reply
Sure
Gift
What is Boyce law
Sly Reply
Boyles law states that the volume of a fixed amount of gas is inversely proportional to pressure acting on that given gas if the temperature remains constant which is: V<k/p or V=k(1/p)
FADILAT
how to convert meter per second to kilometers per hour
grace Reply
Divide with 3.6
Mateo
multiply by (km/1000m) x (3600 s/h) -> 3.6
Muhammad
2 how heat loss is prevented in a vacuum flask
Abdullah Reply
what is science
Helen
logical reasoning for a particular phenomenon.
Ajay
I don't know anything about it 😔. I'm sorry, please forgive 😔
Adarsh
due to non in contact mean no conduction and no convection bec of non conducting base and walls and also their is a grape between the layer like to take the example of thermo flask
Abdul
dimensions v²=u²+2at
Lagben Reply

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask