<< Chapter < Page Chapter >> Page >

Solution

For this problem, note that v 2 = 0 size 12{v rSub { size 8{2} } =0} {} and use conservation of momentum. Thus,

p 1 = p 1 + p 2 size 12{p rSub { size 8{1} } =p' rSub { size 8{1} } +p' rSub { size 8{2} } } {}

or

m 1 v 1 = m 1 v 1 + m 2 v 2 . size 12{m rSub { size 8{1} } v rSub { size 8{1} } =m rSub { size 8{1} } { {v}} sup { ' } rSub { size 8{1} } +m rSub { size 8{2} } { {v}} sup { ' } rSub { size 8{2} } } {}

Using conservation of internal kinetic energy and that v 2 = 0 size 12{v rSub { size 8{2} } =0} {} ,

1 2 m 1 v 1 2 = 1 2 m 1 v 1 2 + 1 2 m 2 v 2 2 . size 12{ { {1} over {2} } m rSub { size 8{1} } v rSub { size 8{1} rSup { size 8{2} } } = { {1} over {2} } m rSub { size 8{1} } v"" lSub { size 8{1} } ' rSup { size 8{2} } + { {1} over {2} } m rSub { size 8{2} } v rSub { size 8{2} } ' rSup { size 8{2} } } {}

Solving the first equation (momentum equation) for v 2 size 12{ { {v}} sup { ' } rSub { size 8{2} } } {} , we obtain

v 2 = m 1 m 2 v 1 v 1 . size 12{ { {v}} sup { ' } rSub { size 8{2} } = { {m rSub { size 8{1} } } over {m rSub { size 8{2} } } } left (v rSub { size 8{1} } - { {v}} sup { ' } rSub { size 8{1} } right )} {}

Substituting this expression into the second equation (internal kinetic energy equation) eliminates the variable v 2 size 12{ { {v}} sup { ' } rSub { size 8{2} } } {} , leaving only v 1 size 12{ { {v}} sup { ' } rSub { size 8{1} } } {} as an unknown (the algebra is left as an exercise for the reader). There are two solutions to any quadratic equation; in this example, they are

v 1 = 4 . 00 m/s size 12{ { {v}} sup { ' } rSub { size 8{1} } =4 "." "00"`"m/s"} {}

and

v 1 = 3 . 00 m/s . size 12{ { {v}} sup { ' } rSub { size 8{1} } = - 3 "." "00"" m/s"} {}

As noted when quadratic equations were encountered in earlier chapters, both solutions may or may not be meaningful. In this case, the first solution is the same as the initial condition. The first solution thus represents the situation before the collision and is discarded. The second solution ( v 1 = 3 . 00 m/s ) size 12{ \( { {v}} sup { ' } rSub { size 8{1} } = - 3 "." "00"`"m/s" \) } {} is negative, meaning that the first object bounces backward. When this negative value of v 1 size 12{ { {v}} sup { ' } rSub { size 8{1} } } {} is used to find the velocity of the second object after the collision, we get

v 2 = m 1 m 2 v 1 v 1 = 0 . 500 kg 3 . 50 kg 4 . 00 3 . 00 m/s size 12{ { {v}} sup { ' } rSub { size 8{2} } = { {m rSub { size 8{1} } } over {m rSub { size 8{2} } } } left (v rSub { size 8{1} } - { {v}} sup { ' } rSub { size 8{1} } right )= { {0 "." "500"`"kg"} over {3 "." "50"`"kg"} } left [4 "." "00" - left ( - 3 "." "00" right ) right ]`"m/s"} {}

or

v 2 = 1 . 00 m/s . size 12{ { {v}} sup { ' } rSub { size 8{2} } =1 "." "00"`"m/s"} {}

Discussion

The result of this example is intuitively reasonable. A small object strikes a larger one at rest and bounces backward. The larger one is knocked forward, but with a low speed. (This is like a compact car bouncing backward off a full-size SUV that is initially at rest.) As a check, try calculating the internal kinetic energy before and after the collision. You will see that the internal kinetic energy is unchanged at 4.00 J. Also check the total momentum before and after the collision; you will find it, too, is unchanged.

The equations for conservation of momentum and internal kinetic energy as written above can be used to describe any one-dimensional elastic collision of two objects. These equations can be extended to more objects if needed.

Making connections: take-home investigation—ice cubes and elastic collision

Find a few ice cubes which are about the same size and a smooth kitchen tabletop or a table with a glass top. Place the ice cubes on the surface several centimeters away from each other. Flick one ice cube toward a stationary ice cube and observe the path and velocities of the ice cubes after the collision. Try to avoid edge-on collisions and collisions with rotating ice cubes. Have you created approximately elastic collisions? Explain the speeds and directions of the ice cubes using momentum.

Phet explorations: collision lab

Investigate collisions on an air hockey table. Set up your own experiments: vary the number of discs, masses and initial conditions. Is momentum conserved? Is kinetic energy conserved? Vary the elasticity and see what happens.

Collision Lab

Section summary

  • An elastic collision is one that conserves internal kinetic energy.
  • Conservation of kinetic energy and momentum together allow the final velocities to be calculated in terms of initial velocities and masses in one dimensional two-body collisions.

Conceptual questions

What is an elastic collision?

Got questions? Get instant answers now!

Problems&Exercises

Two identical objects (such as billiard balls) have a one-dimensional collision in which one is initially motionless. After the collision, the moving object is stationary and the other moves with the same speed as the other originally had. Show that both momentum and kinetic energy are conserved.

Got questions? Get instant answers now!

Professional Application

Two manned satellites approach one another at a relative speed of 0.250 m/s, intending to dock. The first has a mass of 4 . 00 × 10 3 kg size 12{4 "." "00" times "10" rSup { size 8{3} } " kg"} {} , and the second a mass of 7 . 50 × 10 3 kg size 12{7 "." "50" times "10" rSup { size 8{3} } " kg"} {} . If the two satellites collide elastically rather than dock, what is their final relative velocity?

0.250 m/s

Got questions? Get instant answers now!

A 70.0-kg ice hockey goalie, originally at rest, catches a 0.150-kg hockey puck slapped at him at a velocity of 35.0 m/s. Suppose the goalie and the ice puck have an elastic collision and the puck is reflected back in the direction from which it came. What would their final velocities be in this case?

Got questions? Get instant answers now!

Questions & Answers

full meaning of GPS system
Anaele Reply
how to prove that Newton's law of universal gravitation F = GmM ______ R²
Kaka Reply
sir dose it apply to the human system
Olubukola Reply
prove that the centrimental force Fc= M1V² _________ r
Kaka Reply
prove that centripetal force Fc = MV² ______ r
Kaka
how lesers can transmit information
mitul Reply
griffts bridge derivative
Ganesh Reply
below me
please explain; when a glass rod is rubbed with silk, it becomes positive and the silk becomes negative- yet both attracts dust. does dust have third types of charge that is attracted to both positive and negative
Timothy Reply
what is a conductor
Timothy
hello
Timothy
below me
why below you
Timothy
no....I said below me ...... nothing below .....ok?
dust particles contains both positive and negative charge particles
Mbutene
corona charge can verify
Stephen
when pressure increases the temperature remain what?
Ibrahim Reply
remains the temperature
betuel
what is frequency
Mbionyi Reply
define precision briefly
Sujitha Reply
CT scanners do not detect details smaller than about 0.5 mm. Is this limitation due to the wavelength of x rays? Explain.
MITHRA Reply
hope this helps
what's critical angle
Mahmud Reply
The Critical Angle Derivation So the critical angle is defined as the angle of incidence that provides an angle of refraction of 90-degrees. Make particular note that the critical angle is an angle of incidence value. For the water-air boundary, the critical angle is 48.6-degrees.
dude.....next time Google it
okay whatever
Chidalu
pls who can give the definition of relative density?
Temiloluwa
the ratio of the density of a substance to the density of a standard, usually water for a liquid or solid, and air for a gas.
Chidalu
What is momentum
aliyu Reply
mass ×velocity
Chidalu
it is the product of mass ×velocity of an object
Chidalu
how do I highlight a sentence]p? I select the sentence but get options like copy or web search but no highlight. tks. src
Sean Reply
then you can edit your work anyway you want
Wat is the relationship between Instataneous velocity
Oyinlusi Reply
Instantaneous velocity is defined as the rate of change of position for a time interval which is almost equal to zero
Astronomy
Practice Key Terms 2

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask