<< Chapter < Page Chapter >> Page >

A non-satellite body fulfilling only the first two of the above criteria is classified as “dwarf planet.”

In 2006, Pluto was demoted to a ‘dwarf planet’ after scientists revised their definition of what constitutes a “true” planet.

Orbital data and kepler’s third law
Parent Satellite Average orbital radius r (km) Period T(y) r 3 / T 2 (km 3 / y 2 )
Earth Moon 3.84 × 10 5 size 12{3 "." "84" times "10" rSup { size 8{5} } } {} 0.07481 1 . 01 × 10 19 size 12{1 "." "01" times times "10" rSup { size 8{"18"} } } {}
Sun Mercury 5 . 79 × 10 7 size 12{5 "." "79" times "10" rSup { size 8{7} } } {} 0.2409 3 . 34 × 10 24 size 12{3 "." "34" times "10" rSup { size 8{"24"} } } {}
Venus 1 . 082 × 10 8 size 12{1 "." "082" times "10" rSup { size 8{8} } } {} 0.6150 3 . 35 × 10 24 size 12{3 "." "35" times "10" rSup { size 8{"24"} } } {}
Earth 1 . 496 × 10 8 size 12{1 "." "496" times "10" rSup { size 8{8} } } {} 1.000 3 . 35 × 10 24 size 12{3 "." "35" times "10" rSup { size 8{"24"} } } {}
Mars 2 . 279 × 10 8 size 12{2 "." "279" times "10" rSup { size 8{8} } } {} 1.881 3 . 35 × 10 24 size 12{3 "." "35" times "10" rSup { size 8{"24"} } } {}
Jupiter 7 . 783 × 10 8 size 12{7 "." "783" times "10" rSup { size 8{8} } } {} 11.86 3 . 35 × 10 24 size 12{3 "." "35" times "10" rSup { size 8{"24"} } } {}
Saturn 1 . 427 × 10 9 size 12{1 "." "427" times "10" rSup { size 8{9} } } {} 29.46 3 . 35 × 10 24 size 12{3 "." "35" times "10" rSup { size 8{"24"} } } {}
Neptune 4 . 497 × 10 9 size 12{4 "." "497" times "10" rSup { size 8{9} } } {} 164.8 3 . 35 × 10 24 size 12{3 "." "35" times "10" rSup { size 8{"24"} } } {}
Pluto 5 . 90 × 10 9 size 12{5 "." "90" times "10" rSup { size 8{9} } } {} 248.3 3 . 33 × 10 24 size 12{3 "." "33" times "10" rSup { size 8{"24"} } } {}
Jupiter Io 4 . 22 × 10 5 size 12{4 "." "22" times "10" rSup { size 8{5} } } {} 0.00485 (1.77 d) 3 . 19 × 10 21 size 12{3 "." "19" times "10" rSup { size 8{"21"} } } {}
Europa 6 . 71 × 10 5 size 12{6 "." "71" times "10" rSup { size 8{5} } } {} 0.00972 (3.55 d) 3 . 20 × 10 21 size 12{3 "." "20" times "10" rSup { size 8{"21"} } } {}
Ganymede 1 . 07 × 10 6 size 12{1 "." "07" times "10" rSup { size 8{6} } } {} 0.0196 (7.16 d) 3 . 19 × 10 21 size 12{3 "." "19" times "10" rSup { size 8{"21"} } } {}
Callisto 1 . 88 × 10 6 size 12{1 "." "88" times "10" rSup { size 8{6} } } {} 0.0457 (16.19 d) 3 . 20 × 10 21 size 12{3 "." "20" times "10" rSup { size 8{"21"} } } {}

The universal law of gravitation is a good example of a physical principle that is very broadly applicable. That single equation for the gravitational force describes all situations in which gravity acts. It gives a cause for a vast number of effects, such as the orbits of the planets and moons in the solar system. It epitomizes the underlying unity and simplicity of physics.

Before the discoveries of Kepler, Copernicus, Galileo, Newton, and others, the solar system was thought to revolve around Earth as shown in [link] (a). This is called the Ptolemaic view, for the Greek philosopher who lived in the second century AD. This model is characterized by a list of facts for the motions of planets with no cause and effect explanation. There tended to be a different rule for each heavenly body and a general lack of simplicity.

[link] (b) represents the modern or Copernican model. In this model, a small set of rules and a single underlying force explain not only all motions in the solar system, but all other situations involving gravity. The breadth and simplicity of the laws of physics are compelling. As our knowledge of nature has grown, the basic simplicity of its laws has become ever more evident.

In figure a the paths of the different planets are shown in the forms of dotted concentric circles with the Earth at the center with its Moon. The Sun is also shown revolving around the Earth. Each planet is labeled with its name. On the planets Mercury, Venus, Mars, Jupiter and Saturn green colored epicycles are shown. In the figure b Copernican view of planet is shown. The Sun is shown at the center of the solar system. The planets are shown moving around the Sun.
(a) The Ptolemaic model of the universe has Earth at the center with the Moon, the planets, the Sun, and the stars revolving about it in complex superpositions of circular paths. This geocentric model, which can be made progressively more accurate by adding more circles, is purely descriptive, containing no hints as to what are the causes of these motions. (b) The Copernican model has the Sun at the center of the solar system. It is fully explained by a small number of laws of physics, including Newton’s universal law of gravitation.

Section summary

  • Kepler’s laws are stated for a small mass m size 12{m} {} orbiting a larger mass M size 12{M} {} in near-isolation. Kepler’s laws of planetary motion are then as follows:

    Kepler’s first law

    The orbit of each planet about the Sun is an ellipse with the Sun at one focus.

    Kepler’s second law

    Each planet moves so that an imaginary line drawn from the Sun to the planet sweeps out equal areas in equal times.

    Kepler’s third law

    The ratio of the squares of the periods of any two planets about the Sun is equal to the ratio of the cubes of their average distances from the Sun:

    T 1  2 T 2  2 = r 1  3 r 2  3 , size 12{ { {T rSub { size 8{1} rSup { size 8{2} } } } over {T rSub { size 8{2} rSup { size 8{2} } } } } = { {r rSub { size 8{1} rSup { size 8{3} } } } over {r rSub { size 8{2} rSup { size 8{3} } } } } } {}

    where T size 12{m} {} is the period (time for one orbit) and r size 12{m} {} is the average radius of the orbit.

  • The period and radius of a satellite’s orbit about a larger body M size 12{m} {} are related by
    T 2 = 2 GM r 3 size 12{T rSup { size 8{2} } = { {4π rSup { size 8{2} } } over { ital "GM"} } r rSup { size 8{3} } } {}

    or

    r 3 T 2 = G 2 M . size 12{ { {r rSup { size 8{3} } } over {T rSup { size 8{2} } } } = { {G} over {4π rSup { size 8{2} } } } M} {}

Questions & Answers

What interference
Moyinoluwa Reply
What is a polarized light called?
Moyinoluwa
what is a half life
Mama Reply
the time taken for a radioactive element to decay by half of its original mass
ken
what is radioactive element
mohammed
Half of the total time required by a radioactive nuclear atom to totally disintegrate
Justice
radioactive elements are those with unstable nuclei(ie have protons more than neutrons, or neutrons more than protons
Justice
in other words, the radioactive atom or elements have unequal number of protons to neutrons.
Justice
state the laws of refraction
Fabian
state laws of reflection
Fabian
Why does a bicycle rider bends towards the corner when is turning?
Mac
When do we say that the stone thrown vertically up wards accelerate negatively?
Mac
Give two importance of insulator placed between plates of a capacitor.
Mac
Macho had a shoe with a big sole moving in mudy Road, shanitah had a shoe with a small sole. Give reasons for those two cases.
Mac
when was the name taken from
Biola Reply
retardation of a car
Biola
when was the name retardation taken
Biola
did you mean a motion with velocity decreases uniformly by the time? then, the vector acceleration is opposite direction with vector velocity
Sphere
Atomic transmutation
Basirat Reply
An atom is the smallest indivisible particular of an element
mosco Reply
what is an atomic
Awene Reply
reference on periodic table
Titus Reply
what Is resonance?
Mozam Reply
phenomena of increasing amplitude from normal position of a substance due to some external source.
akif
What is a black body
Amey Reply
Black body is the ideal body can absorb and emit all radiation
Ahmed
the emissivity of black body is 1. it is a perfect absorber and emitter of heat.
Busayo
Why is null measurement accurate than standard voltmeter
Neemat Reply
that is photoelectric effect ?
Sabir Reply
It is the emission of electrons when light hits a material
Anita
Yeah
yusuf
is not just a material
Neemat
it is the surface of a metal
Neemat
what is the formula for time of flight ,maxjmum height and range
agangan Reply
what is an atom
Awene
how does a lightning rod protect a building from damage due to lightning ?
Faith Reply
due to its surface lustre but due to some factors it can corrode but not easily as it lightning surface
babels
pls what is mirage
babels
light rays bend to produce a displaced image of distant objects; it's an natural & optical phenomenon......
Deepika
what is the dimensional formula for torque
Otto Reply
L2MT-2
Jolly
same units of energy
Baber
what is same units of energy?
Baber
Nm
Sphere
Ws
Sphere
CV
Sphere
M L2 T -2
Dokku
it is like checking the dimension of force. which is ML2T-2
Busayo
ML2T-2
Joshua
M L2 T-2
Samuel
what is the significance of moment of inertia?
study
an object of mass 200g moves along a circular path of radius 0.5cm with a speed of 2m/s. calculate the angular velocity ii period iii frequency of the object
Faith Reply
w = 2/(0.005) period = PIE(0.005) f = 1/(PIE(0.005)) assuming uniform motion idk..
Georgie
w=2/(0.005)×100
isaac
supposed the speed on the path is constant angular velocity w (rad/s) = v (m/s) : R (m) period T (s) = 2*Pi * R : v frequency f ( Hz) = 1: T
Sphere
a=w.w.r=mv.v/r,w=mv/r=0.2×2/0.005=80rads-s
Mac

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask