# 6.1 Rotation angle and angular velocity  (Page 2/9)

 Page 2 / 9
$v=\frac{\text{Δ}s}{\text{Δ}t}\text{.}$

From $\text{Δ}\theta =\frac{\text{Δ}s}{r}$ we see that $\text{Δ}s=r\text{Δ}\theta$ . Substituting this into the expression for $v$ gives

$v=\frac{r\text{Δ}\theta }{\text{Δ}t}=\mathrm{r\omega }\text{.}$

We write this relationship in two different ways and gain two different insights:

The first relationship in states that the linear velocity $v$ is proportional to the distance from the center of rotation, thus, it is largest for a point on the rim (largest $r$ ), as you might expect. We can also call this linear speed $v$ of a point on the rim the tangential speed . The second relationship in can be illustrated by considering the tire of a moving car. Note that the speed of a point on the rim of the tire is the same as the speed $v$ of the car. See [link] . So the faster the car moves, the faster the tire spins—large $v$ means a large $\omega$ , because $v=\mathrm{r\omega }$ . Similarly, a larger-radius tire rotating at the same angular velocity ( $\omega$ ) will produce a greater linear speed ( $v$ ) for the car.

## How fast does a car tire spin?

Calculate the angular velocity of a 0.300 m radius car tire when the car travels at $\text{15}\text{.}0\phantom{\rule{0.25em}{0ex}}\text{m/s}$ (about $\text{54}\phantom{\rule{0.25em}{0ex}}\text{km/h}$ ). See [link] .

Strategy

Because the linear speed of the tire rim is the same as the speed of the car, we have $v=\text{15.0 m/s}.$ The radius of the tire is given to be $r=\text{0.300 m}.$ Knowing $v$ and $r$ , we can use the second relationship in to calculate the angular velocity.

Solution

To calculate the angular velocity, we will use the following relationship:

$\omega =\frac{v}{r}\text{.}$

Substituting the knowns,

$\omega =\frac{\text{15}\text{.}0\phantom{\rule{0.25em}{0ex}}\text{m/s}}{0\text{.}\text{300}\phantom{\rule{0.25em}{0ex}}\text{m}}=\text{50}\text{.}0\phantom{\rule{0.25em}{0ex}}\text{rad/s.}$

Discussion

When we cancel units in the above calculation, we get 50.0/s. But the angular velocity must have units of rad/s. Because radians are actually unitless (radians are defined as a ratio of distance), we can simply insert them into the answer for the angular velocity. Also note that if an earth mover with much larger tires, say 1.20 m in radius, were moving at the same speed of 15.0 m/s, its tires would rotate more slowly. They would have an angular velocity

$\omega =\left(\text{15}\text{.}0\phantom{\rule{0.25em}{0ex}}\text{m/s}\right)/\left(1\text{.}\text{20}\phantom{\rule{0.25em}{0ex}}\text{m}\right)=\text{12}\text{.}5\phantom{\rule{0.25em}{0ex}}\text{rad/s.}$

Both $\omega$ and $v$ have directions (hence they are angular and linear velocities , respectively). Angular velocity has only two directions with respect to the axis of rotation—it is either clockwise or counterclockwise. Linear velocity is tangent to the path, as illustrated in [link] .

## Take-home experiment

Tie an object to the end of a string and swing it around in a horizontal circle above your head (swing at your wrist). Maintain uniform speed as the object swings and measure the angular velocity of the motion. What is the approximate speed of the object? Identify a point close to your hand and take appropriate measurements to calculate the linear speed at this point. Identify other circular motions and measure their angular velocities.

#### Questions & Answers

state Faraday first law
what does the speedometer of a car measure ?
Car speedometer measures the rate of change of distance per unit time.
Moses
describe how a Michelson interferometer can be used to measure the index of refraction of a gas (including air)
using the law of reflection explain how powder takes the shine off a person's nose. what is the name of the optical effect?
WILLIAM
is higher resolution of microscope using red or blue light?.explain
WILLIAM
can sound wave in air be polarized?
Unlike transverse waves such as electromagnetic waves, longitudinal waves such as sound waves cannot be polarized. ... Since sound waves vibrate along their direction of propagation, they cannot be polarized
Astronomy
A proton moves at 7.50×107m/s perpendicular to a magnetic field. The field causes the proton to travel in a circular path of radius 0.800 m. What is the field strength?
derived dimenionsal formula
what is the difference between mass and weight
assume that a boy was born when his father was eighteen years.if the boy is thirteen years old now, how is his father in
Isru
what is head-on collision
what is airflow
derivative of first differential equation
why static friction is greater than Kinetic friction
draw magnetic field pattern for two wire carrying current in the same direction
An American traveler in New Zealand carries a transformer to convert New Zealand’s standard 240 V to 120 V so that she can use some small appliances on her trip.
What is the ratio of turns in the primary and secondary coils of her transformer?
nkombo
what is energy
Yusuf
How electric lines and equipotential surface are mutually perpendicular?
The potential difference between any two points on the surface is zero that implies È.Ŕ=0, Where R is the distance between two different points &E= Electric field intensity. From which we have cos þ =0, where þ is the angle between the directions of field and distance line, as E andR are zero. Thus
sorry..E and R are non zero...
By how much leeway (both percentage and mass) would you have in the selection of the mass of the object in the previous problem if you did not wish the new period to be greater than 2.01 s or less than 1.99 s?
hello
Chichi
Hi
Matthew
hello
Sujan
Hi I'm Matthew, and the answer is Lee weighs in mass 0.008kg OR 0.009kg
Matthew
14 year old answers college physics and the crowd goes wild!
Matthew
Hlo