<< Chapter < Page Chapter >> Page >
  • Define and discuss the nucleus in an atom.
  • Define atomic number.
  • Define and discuss isotopes.
  • Calculate the density of the nucleus.
  • Explain nuclear force.

What is inside the nucleus? Why are some nuclei stable while others decay? (See [link] .) Why are there different types of decay ( α size 12{α} {} , β size 12{β} {} and γ size 12{γ} {} )? Why are nuclear decay energies so large? Pursuing natural questions like these has led to far more fundamental discoveries than you might imagine.

The first image shows a lump of coal. The second image shows a pair of hands holding a metal uranium disk. Third image shows a cylindrical glass tube containing slivery-brown cesium.
Why is most of the carbon in this coal stable (a), while the uranium in the disk (b) slowly decays over billions of years? Why is cesium in this ampule (c) even less stable than the uranium, decaying in far less than 1/1,000,000 the time? What is the reason uranium and cesium undergo different types of decay ( α size 12{α} {} and β size 12{β} {} , respectively)? (credits: (a) Bresson Thomas, Wikimedia Commons; (b) U.S. Department of Energy; (c) Tomihahndorf, Wikimedia Commons)

We have already identified protons    as the particles that carry positive charge in the nuclei. However, there are actually two types of particles in the nuclei—the proton and the neutron , referred to collectively as nucleons    , the constituents of nuclei. As its name implies, the neutron    is a neutral particle ( q = 0 size 12{q=0} {} ) that has nearly the same mass and intrinsic spin as the proton. [link] compares the masses of protons, neutrons, and electrons. Note how close the proton and neutron masses are, but the neutron is slightly more massive once you look past the third digit. Both nucleons are much more massive than an electron. In fact, m p = 1836 m e size 12{m rSub { size 8{p} } ="1836" m rSub { size 8{e} } } {} (as noted in Medical Applications of Nuclear Physics and m n = 1839 m e size 12{m rSub { size 8{n} } ="1839" m rSub { size 8{e} } } {} .

[link] also gives masses in terms of mass units that are more convenient than kilograms on the atomic and nuclear scale. The first of these is the unified atomic mass    unit (u), defined as

1 u = 1 . 6605 × 10 27 kg. size 12{"1 u"=1 "." "6605"´"10" rSup { size 8{-"27"} } " kg"} {}

This unit is defined so that a neutral carbon 12 C atom has a mass of exactly 12 u. Masses are also expressed in units of MeV/ c 2 . These units are very convenient when considering the conversion of mass into energy (and vice versa), as is so prominent in nuclear processes. Using E = mc 2 size 12{E= ital "mc" rSup { size 8{2} } } {} and units of m size 12{m} {} in MeV/ c 2 size 12{"MeV/"c rSup { size 8{2} } } {} , we find that c 2 size 12{c rSup { size 8{2} } } {} cancels and E size 12{E} {} comes out conveniently in MeV. For example, if the rest mass of a proton is converted entirely into energy, then

E = mc 2 = ( 938.27 MeV/ c 2 ) c 2 = 938.27 MeV. size 12{E= ital "mc" rSup { size 8{2} } = \( "938" "." "27" "MeV/"c rSup { size 8{2} } \) c rSup { size 8{2} } ="938" "." "27"" MeV"} {}

It is useful to note that 1 u of mass converted to energy produces 931.5 MeV, or

1 u = 931.5 MeV/ c 2 . size 12{"1 u"="931" "." 5" MeV/"c rSup { size 8{2} } } {}

All properties of a nucleus are determined by the number of protons and neutrons it has. A specific combination of protons and neutrons is called a nuclide    and is a unique nucleus. The following notation is used to represent a particular nuclide:

Z A X N , size 12{"" lSub { size 8{Z} } lSup { size 8{A} } X rSub { size 8{N} } } {}

where the symbols A size 12{A} {} , X size 12{X} {} , Z size 12{Z} {} , and N size 12{N} {} are defined as follows: The number of protons in a nucleus is the atomic number     Z size 12{Z} {} , as defined in Medical Applications of Nuclear Physics . X is the symbol for the element , such as Ca for calcium. However, once Z size 12{Z} {} is known, the element is known; hence, Z size 12{Z} {} and X are redundant. For example, Z = 20 size 12{Z="20"} {} is always calcium, and calcium always has Z = 20 size 12{Z="20"} {} . N size 12{N} {} is the number of neutrons in a nucleus. In the notation for a nuclide, the subscript N size 12{N} {} is usually omitted. The symbol A size 12{A} {} is defined as the number of nucleons or the total number of protons and neutrons ,

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask