<< Chapter < Page Chapter >> Page >
An external magnetic field along vertical z-axis is shown. Several spectral lines are shown originating from the same point on the z-axis which represents orbital angular momentum.
Only certain angles are allowed between the orbital angular momentum and an external magnetic field. This is implied by the fact that the Zeeman effect splits spectral lines into several discrete lines. Each line is associated with an angle between the external magnetic field and magnetic fields due to electrons and their orbits.

We already know that the magnitude of angular momentum is quantized for electron orbits in atoms. The new insight is that the direction of the orbital angular momentum is also quantized . The fact that the orbital angular momentum can have only certain directions is called space quantization    . Like many aspects of quantum mechanics, this quantization of direction is totally unexpected. On the macroscopic scale, orbital angular momentum, such as that of the moon around the earth, can have any magnitude and be in any direction.

Detailed treatment of space quantization began to explain some complexities of atomic spectra, but certain patterns seemed to be caused by something else. As mentioned, spectral lines are actually closely spaced doublets, a characteristic called fine structure    , as shown in [link] . The doublet changes when a magnetic field is applied, implying that whatever causes the doublet interacts with a magnetic field. In 1925, Sem Goudsmit and George Uhlenbeck, two Dutch physicists, successfully argued that electrons have properties analogous to a macroscopic charge spinning on its axis. Electrons, in fact, have an internal or intrinsic angular momentum called intrinsic spin     S size 12{S} {} . Since electrons are charged, their intrinsic spin creates an intrinsic magnetic field     B int size 12{B rSub { size 8{"int"} } } {} , which interacts with their orbital magnetic field B orb size 12{B rSub { size 8{"orb"} } } {} . Furthermore, electron intrinsic spin is quantized in magnitude and direction , analogous to the situation for orbital angular momentum. The spin of the electron can have only one magnitude, and its direction can be at only one of two angles relative to a magnetic field, as seen in [link] . We refer to this as spin up or spin down for the electron. Each spin direction has a different energy; hence, spectroscopic lines are split into two. Spectral doublets are now understood as being due to electron spin.

Image a shows a magnified view of two spectral lines. The magnified view shows that these spectral lines are doublets, which means two parallel lines being placed together. In image b a structure in which concentric waves are expanding out is shown.
Fine structure. Upon close examination, spectral lines are doublets, even in the absence of an external magnetic field. The electron has an intrinsic magnetic field that interacts with its orbital magnetic field.
The image shows two cases of intrinsic magnetic field of an electron due to its spin. In the first case, circular orbit is shown with external magnetic field in the vertical direction and the direction of the intrinsic magnetic field of electron due to its spin is upwards at an angle of fifty four point seven degrees with the vertical axis. In the second case, circular orbit is shown with external magnetic field in the vertical direction and the direction of the intrinsic magnetic field of electron due to its spin is downwards at an angle of fifty four point seven degrees with the vertical axis.
The intrinsic magnetic field B int size 12{B rSub { size 8{"int"} } } {} of an electron is attributed to its spin, S size 12{S} {} , roughly pictured to be due to its charge spinning on its axis. This is only a crude model, since electrons seem to have no size. The spin and intrinsic magnetic field of the electron can make only one of two angles with another magnetic field, such as that created by the electron’s orbital motion. Space is quantized for spin as well as for orbital angular momentum.

These two new insights—that the direction of angular momentum, whether orbital or spin, is quantized, and that electrons have intrinsic spin—help to explain many of the complexities of atomic and molecular spectra. In magnetic resonance imaging, it is the way that the intrinsic magnetic field of hydrogen and biological atoms interact with an external field that underlies the diagnostic fundamentals.

Section summary

  • The Zeeman effect—the splitting of lines when a magnetic field is applied—is caused by other quantized entities in atoms.
  • Both the magnitude and direction of orbital angular momentum are quantized.
  • The same is true for the magnitude and direction of the intrinsic spin of electrons.

Conceptual questions

What is the Zeeman effect, and what type of quantization was discovered because of this effect?

Got questions? Get instant answers now!

Questions & Answers

a thick glass cup cracks when hot liquid is poured into it suddenly
Aiyelabegan Reply
because of the sudden contraction that takes place.
railway crack has gap between the end of each length because?
Aiyelabegan Reply
For expansion
Please i really find it dificult solving equations on physic, can anyone help me out?
Big Reply
what is the equation?
fersnels biprism spectrometer how to determined
Bala Reply
how to study the hall effect to calculate the hall effect coefficient of the given semiconductor have to calculate the carrier density by carrier mobility.
what is the difference between atomic physics and momentum
Nana Reply
find the dimensional equation of work,power,and moment of a force show work?
Emmanuel Reply
What's sup guys
cul and you all
cool you bro
so what is going on here
hello peeps
Michelson Morley experiment
Riya Reply
how are you
am good
Calculate the final velocity attained, when a ball is given a velocity of 2.5m/s, acceleration of 0.67m/s² and reaches its point in 10s. Good luck!!!
Eklu Reply
vf=vi+at vf=2.5+ 0.67*10 vf= 2.5 + 6.7 vf = 9.2
s = vi t +1/2at sq s=58.5 s=v av X t vf= 9.2
how 2.68
v=u+at where v=final velocity u=initial velocity a=acceleration t=time
the answer is 9.2m/s
express your height in Cm
Emmanuel Reply
my project is Sol gel process how to prepare this process pls tell me
the dimension of work and energy is ML2T2 find the unit of work and energy hence drive for work?
Emmanuel Reply
Two bodies P and Quarter each of mass 1000g. Moved in the same direction with speed of 10m/s and 20m/s respectively. Calculate the impulse of P and Q obeying newton's 3rd law of motion
Shimolla Reply
the answer is 0.03n according to the 3rd law of motion if the are in same direction meaning they interact each other.
definition for wave?
Doc Reply
A disturbance that travel from one medium to another and without causing permanent change to its displacement
In physics, a wave is a disturbance that transfers energy through matter or space, with little or no associated mass transport (Mass transfer). ... There are two main types ofwaves: mechanical and electromagnetic. Mechanicalwaves propagate through a physical matter, whose substance is being deformed
thanks jare
Note: LINEAR MOMENTUM Linear momentum is defined as the product of a system’s mass multiplied by its velocity: size 12{p=mv} {}
what is physic
zalmia Reply
please gave me answar
Study of matter and energy
physics is the science of matter and energy and their interactions
physics is the technology behind air and matter
hi sir
how easy to understanding physics sir
Easy to learn
31. Calculate the initial (from rest) acceleration of a proton in a 5.00×106 N/C electric field (such as created by a research Van de Graaff). Explicitly show how you follow the steps in the Problem-Solving Strategy for electrostatics.
Catina Reply
A tennis ball is projected at an angle and attains a range of 78. if the velocity is 30metres per second, calculate the angle
what friction
Wisdom Reply
question on friction
the rubbing of one object or surface against another.
momentum is the product of mass and it's velocity.
what are bioelements?
Friction is a force that exist between two objects in contact. e.g. friction between road and car tires.
Practice Key Terms 7

Get the best College physics course in your pocket!

Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?