<< Chapter < Page Chapter >> Page >

The observed hydrogen-spectrum wavelengths can be calculated using the following formula:

1 λ = R 1 n f 2 1 n i 2 , size 12{ { {1} over {λ} } =R left ( { {1} over {n rSub { size 8{f} } rSup { size 8{2} } } } - { {1} over {n rSub { size 8{i} } rSup { size 8{2} } } } right )} {}

where λ size 12{λ} {} is the wavelength of the emitted EM radiation and R size 12{R} {} is the Rydberg constant    , determined by the experiment to be

R = 1 . 097 × 10 7 / m ( or m 1 ) . size 12{R=1 "." "097" times "10" rSup { size 8{7} } `/"m " \( "or m" rSup { size 8{ - 1} } \) } {}

The constant n f is a positive integer associated with a specific series. For the Lyman series, n f = 1 ; for the Balmer series, n f = 2 ; for the Paschen series, n f = 3 ; and so on. The Lyman series is entirely in the UV, while part of the Balmer series is visible with the remainder UV. The Paschen series and all the rest are entirely IR. There are apparently an unlimited number of series, although they lie progressively farther into the infrared and become difficult to observe as n f increases. The constant n i is a positive integer, but it must be greater than n f . Thus, for the Balmer series, n f = 2 and n i = 3, 4, 5, 6, ... . Note that n i size 12{n rSub { size 8{i} } } {} can approach infinity. While the formula in the wavelengths equation was just a recipe designed to fit data and was not based on physical principles, it did imply a deeper meaning. Balmer first devised the formula for his series alone, and it was later found to describe all the other series by using different values of n f size 12{n rSub { size 8{f} } } {} . Bohr was the first to comprehend the deeper meaning. Again, we see the interplay between experiment and theory in physics. Experimentally, the spectra were well established, an equation was found to fit the experimental data, but the theoretical foundation was missing.

The figure shows three horizontal lines at small distances from each other. Between the two lower lines, the Lyman series, with four vertical red bands in compact form, is shown. The value of the constant n sub f is 1 and the wavelengths are ninety-one nanometers to one hundred nanometers. The Balmer series is shown to the right side of this series. The value of the constant n sub f is two, and the range of wavelengths is from three hundred sixty five to six hundred fifty six nanometers. At the right side of this, the Paschen series bands are shown. The value of the constant n sub f is three, and the range of the wavelengths is from eight hundred twenty nanometers to one thousand eight hundred and seventy five nanometers.
A schematic of the hydrogen spectrum shows several series named for those who contributed most to their determination. Part of the Balmer series is in the visible spectrum, while the Lyman series is entirely in the UV, and the Paschen series and others are in the IR. Values of n f size 12{n rSub { size 8{f} } } {} and n i size 12{n rSub { size 8{f} } } {} are shown for some of the lines.

Calculating wave interference of a hydrogen line

What is the distance between the slits of a grating that produces a first-order maximum for the second Balmer line at an angle of 15º size 12{"15"°} {} ?

Strategy and Concept

For an Integrated Concept problem, we must first identify the physical principles involved. In this example, we need to know (a) the wavelength of light as well as (b) conditions for an interference maximum for the pattern from a double slit. Part (a) deals with a topic of the present chapter, while part (b) considers the wave interference material of Wave Optics .

Solution for (a)

Hydrogen spectrum wavelength . The Balmer series requires that n f = 2 size 12{n rSub { size 8{f} } =2} {} . The first line in the series is taken to be for n i = 3 size 12{n rSub { size 8{i} } =3} {} , and so the second would have n i = 4 size 12{n rSub { size 8{i} } =4} {} .

The calculation is a straightforward application of the wavelength equation. Entering the determined values for n f size 12{n rSub { size 8{f} } } {} and n i size 12{n rSub { size 8{i} } } {} yields

1 λ = R 1 n f 2 1 n i 2 = 1.097 × 10 7 m –1 1 2 2 1 4 2 = 2.057 × 10 6 m –1 .

Inverting to find λ size 12{λ} {} gives

λ = 1 2.057 × 10 6 m –1 = 486 × 10 9 m = 486 nm. alignl { stack { size 12{λ= { {1} over {2 "." "057" times "10" rSup { size 8{6} } " /m"} } ="486" times "10" rSup { size 8{ - 9} } " m"} {} #="486"`"nm" "." {} } } {}

Discussion for (a)

This is indeed the experimentally observed wavelength, corresponding to the second (blue-green) line in the Balmer series. More impressive is the fact that the same simple recipe predicts all of the hydrogen spectrum lines, including new ones observed in subsequent experiments. What is nature telling us?

Solution for (b)

Double-slit interference ( Wave Optics ). To obtain constructive interference for a double slit, the path length difference from two slits must be an integral multiple of the wavelength. This condition was expressed by the equation

d sin θ = , size 12{d"sin"θ=mλ} {}

where d size 12{d} {} is the distance between slits and θ size 12{θ} {} is the angle from the original direction of the beam. The number m size 12{m} {} is the order of the interference; m = 1 size 12{m=1} {} in this example. Solving for d size 12{d} {} and entering known values yields

d = 1 486 nm sin 15º = 1.88 × 10 6 m . size 12{d= { { left (1 right ) left ("486"" nm" right )} over {"sin""15"°} } =1 "." "88" times "10" rSup { size 8{ - 6} } " m"} {}

Discussion for (b)

This number is similar to those used in the interference examples of Introduction to Quantum Physics (and is close to the spacing between slits in commonly used diffraction glasses).

Got questions? Get instant answers now!

Questions & Answers

What does mean ohms law imply
Victoria Reply
what is matter
folajin Reply
Anything that occupies space
Kevin
Any thing that has weight and occupies space
Victoria
Anything which we can feel by any of our 5 sense organs
Suraj
Right
Roben
thanks
Suraj
what is a sulphate
Alo
any answers
Alo
the time rate of increase in velocity is called
Blessing Reply
acceleration
Emma
What is uniform velocity
Victoria
Greetings,users of that wonderful app.
Frank Reply
how to solve pressure?
Cruz Reply
how do we calculate weight and eara eg an elefant that weight 2000kg has four fits or legs search of surface eara is 0.1m2(1metre square) incontact with the ground=10m2(g =10m2)
Cruz
P=F/A
Mira
can someone derive the formula a little bit deeper?
Bern
what is coplanar force?
OLADITI Reply
what is accuracy and precision
Peace Reply
How does a current follow?
Vineeta Reply
follow?
akif
which one dc or ac current.
akif
how does a current following?
Vineeta
?
akif
AC current
Vineeta
AC current follows due to changing electric field and magnetic field.
akif
you guys are just saying follow is flow not follow please
Abubakar
ok bro thanks
akif
flows
Abubakar
but i wanted to understand him/her in his own language
akif
but I think the statement is written in English not any other language
Abubakar
my mean that in which form he/she written this,will understand better in this form, i write.
akif
ok
Abubakar
ok thanks bro. my mistake
Vineeta
u are welcome
Abubakar
what is a semiconductor
Vineeta Reply
substances having lower forbidden gap between valence band and conduction band
akif
what is a conductor?
Vineeta
replace lower by higher only
akif
convert 56°c to kelvin
Abubakar
How does a current follow?
Vineeta
A semiconductor is any material whose conduction lies between that of a conductor and an insulator.
AKOWUAH
what is Atom? what is molecules? what is ions?
Abubakar Reply
What is a molecule
Samuel Reply
Is a unit of a compound that has two or more atoms either of the same or different atoms
Justice
A molecule is the smallest indivisible unit of a compound, Just like the atom is the smallest indivisible unit of an element.
Rachel
what is a molecule?
Vineeta
what is a vector
smith Reply
A quantity that has both a magnitude AND a direction. E.g velocity, acceleration, force are all vector quantities. Hope this helps :)
deage
what is the difference between velocity and relative velocity?
Mackson
Velocity is the rate of change of displacement with time. Relative velocity on the other hand is the velocity observed by an observer with respect to a reference point.
Chuks
what do u understand by Ultraviolet catastrophe?
Rufai
A certain freely falling object, released from rest, requires 1.5seconds to travel the last 30metres before it hits the ground. (a) Find the velocity of the object when it is 30metres above the ground.
Mackson
A vector is a quantity that has both magnitude and direction
Rufus
the velocity Is 20m/s-2
Rufus
derivation of electric potential
Rugunda Reply
V = Er = (kq/r^2)×r V = kq/r Where V: electric potential.
Chuks
what is the difference between simple motion and simple harmonic motion ?
syed
hi
Peace
hi
Rufus
hi
Chip
simple harmonic motion is a motion of tro and fro of simple pendulum and the likes while simple motion is a linear motion on a straight line.
Muinat
a body acceleration uniform from rest a 6m/s -2 for 8sec and decelerate uniformly to rest in the next 5sec,the magnitude of the deceleration is ?
Patricia Reply
The wording not very clear kindly
Moses
6
Leo
9.6m/s2
Jolly
the magnitude of deceleration =-9.8ms-2. first find the final velocity using the known acceleration and time. next use the calculated velocity to find the size of deceleration.
Mackson
wrong
Peace
-3.4m/s-2
Justice
Hi
Abj
Firstly, calculate final velocity of the body and then the deceleration. The final ans is,-9.6ms-2
Muinat
8x6= 48m/-2 use v=u + at 48÷5=9.6
Lawrence
can i define motion like this motion can be define as the continuous change of an object or position
Shuaib Reply
Any object in motion will come to rest after a time duration. Different objects may cover equal distance in different time duration. Therefore, motion is defined as a change in position depending on time.
Chuks
Practice Key Terms 7

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask