# 30.3 Bohr’s theory of the hydrogen atom  (Page 2/14)

 Page 2 / 14

The observed hydrogen-spectrum wavelengths can be calculated using the following formula:

$\frac{1}{\lambda }=R\left(\frac{1}{{n}_{\text{f}}^{2}}-\frac{1}{{n}_{\text{i}}^{2}}\right),$

where $\lambda$ is the wavelength of the emitted EM radiation and $R$ is the Rydberg constant    , determined by the experiment to be

$R=1\text{.}\text{097}×{\text{10}}^{7}/\text{m}\phantom{\rule{0.25em}{0ex}}\left({\text{or m}}^{-1}\right).$

The constant ${n}_{\text{f}}$ is a positive integer associated with a specific series. For the Lyman series, ${n}_{\text{f}}=1$ ; for the Balmer series, ${n}_{\text{f}}=2$ ; for the Paschen series, ${n}_{\text{f}}=3$ ; and so on. The Lyman series is entirely in the UV, while part of the Balmer series is visible with the remainder UV. The Paschen series and all the rest are entirely IR. There are apparently an unlimited number of series, although they lie progressively farther into the infrared and become difficult to observe as ${n}_{\text{f}}$ increases. The constant ${n}_{\text{i}}$ is a positive integer, but it must be greater than ${n}_{\text{f}}$ . Thus, for the Balmer series, ${n}_{\text{f}}=2$ and ${n}_{\text{i}}=3, 4, 5, 6, ...\text{}$ . Note that ${n}_{\text{i}}$ can approach infinity. While the formula in the wavelengths equation was just a recipe designed to fit data and was not based on physical principles, it did imply a deeper meaning. Balmer first devised the formula for his series alone, and it was later found to describe all the other series by using different values of ${n}_{\text{f}}$ . Bohr was the first to comprehend the deeper meaning. Again, we see the interplay between experiment and theory in physics. Experimentally, the spectra were well established, an equation was found to fit the experimental data, but the theoretical foundation was missing.

## Calculating wave interference of a hydrogen line

What is the distance between the slits of a grating that produces a first-order maximum for the second Balmer line at an angle of $\text{15º}$ ?

Strategy and Concept

For an Integrated Concept problem, we must first identify the physical principles involved. In this example, we need to know (a) the wavelength of light as well as (b) conditions for an interference maximum for the pattern from a double slit. Part (a) deals with a topic of the present chapter, while part (b) considers the wave interference material of Wave Optics .

Solution for (a)

Hydrogen spectrum wavelength . The Balmer series requires that ${n}_{\text{f}}=2$ . The first line in the series is taken to be for ${n}_{\text{i}}=3$ , and so the second would have ${n}_{\text{i}}=4$ .

The calculation is a straightforward application of the wavelength equation. Entering the determined values for ${n}_{\text{f}}$ and ${n}_{\text{i}}$ yields

$\begin{array}{lll}\frac{1}{\lambda }& =& R\left(\frac{1}{{n}_{f}^{2}}-\frac{1}{{n}_{i}^{2}}\right)\\ & =& \left(\text{1.097}×{\text{10}}^{7}\phantom{\rule{0.25em}{0ex}}{\text{m}}^{–1}\right)\left(\frac{1}{{2}^{2}}-\frac{1}{{4}^{2}}\right)\\ & =& \text{2.057}×{\text{10}}^{6}\phantom{\rule{0.25em}{0ex}}{\text{m}}^{–1}\text{.}\end{array}$

Inverting to find $\lambda$ gives

$\begin{array}{lll}\lambda & =& \frac{1}{\text{2.057}×{\text{10}}^{6}\phantom{\rule{0.25em}{0ex}}{\text{m}}^{–1}}=\text{486}×{\text{10}}^{-9}\phantom{\rule{0.25em}{0ex}}\text{m}\\ & =& \text{486 nm.}\end{array}$

Discussion for (a)

This is indeed the experimentally observed wavelength, corresponding to the second (blue-green) line in the Balmer series. More impressive is the fact that the same simple recipe predicts all of the hydrogen spectrum lines, including new ones observed in subsequent experiments. What is nature telling us?

Solution for (b)

Double-slit interference ( Wave Optics ). To obtain constructive interference for a double slit, the path length difference from two slits must be an integral multiple of the wavelength. This condition was expressed by the equation

$d\phantom{\rule{0.25em}{0ex}}\text{sin}\phantom{\rule{0.25em}{0ex}}\theta =\mathrm{m\lambda }\text{,}$

where $d$ is the distance between slits and $\theta$ is the angle from the original direction of the beam. The number $m$ is the order of the interference; $m=1$ in this example. Solving for $d$ and entering known values yields

$d=\frac{\left(1\right)\left(\text{486 nm}\right)}{\text{sin 15º}}=1.88×{\text{10}}^{-6}\phantom{\rule{0.25em}{0ex}}\text{m}.$

Discussion for (b)

This number is similar to those used in the interference examples of Introduction to Quantum Physics (and is close to the spacing between slits in commonly used diffraction glasses).

write an expression for a plane progressive wave moving from left to right along x axis and having amplitude 0.02m, frequency of 650Hz and speed if 680ms-¹
how does a model differ from a theory
what is vector quantity
Vector quality have both direction and magnitude, such as Force, displacement, acceleration and etc.
Besmellah
Is the force attractive or repulsive between the hot and neutral lines hung from power poles? Why?
what's electromagnetic induction
electromagnetic induction is a process in which conductor is put in a particular position and magnetic field keeps varying.
Lukman
wow great
Salaudeen
what is mutual induction?
je
mutual induction can be define as the current flowing in one coil that induces a voltage in an adjacent coil.
Johnson
how to undergo polarization
show that a particle moving under the influence of an attractive force mu/y³ towards the axis x. show that if it be projected from the point (0,k) with the component velocities U and V parallel to the axis of x and y, it will not strike the axis of x unless u>v²k² and distance uk²/√u-vk as origin
show that a particle moving under the influence of an attractive force mu/y^3 towards the axis x. show that if it be projected from the point (0,k) with the component velocities U and V parallel to the axis of x and y, it will not strike the axis of x unless u>v^2k^2 and distance uk^2/√u-k as origin
No idea.... Are you even sure this question exist?
Mavis
I can't even understand the question
yes it was an assignment question "^"represent raise to power pls
Gabriel
Gabriel
An engineer builds two simple pendula. Both are suspended from small wires secured to the ceiling of a room. Each pendulum hovers 2 cm above the floor. Pendulum 1 has a bob with a mass of 10kg . Pendulum 2 has a bob with a mass of 100 kg . Describe how the motion of the pendula will differ if the bobs are both displaced by 12º .
no ideas
Augstine
if u at an angle of 12 degrees their period will be same so as their velocity, that means they both move simultaneously since both both hovers at same length meaning they have the same length
Modern cars are made of materials that make them collapsible upon collision. Explain using physics concept (Force and impulse), how these car designs help with the safety of passengers.
calculate the force due to surface tension required to support a column liquid in a capillary tube 5mm. If the capillary tube is dipped into a beaker of water
find the time required for a train Half a Kilometre long to cross a bridge almost kilometre long racing at 100km/h
method of polarization
Ajayi
What is atomic number?
The number of protons in the nucleus of an atom
Deborah
type of thermodynamics
oxygen gas contained in a ccylinder of volume has a temp of 300k and pressure 2.5×10Nm
why the satellite does not drop to the earth explain
what is a matter
Yinka
what is matter
Yinka
what is matter
Yinka
what is a matter
Yinka
I want the nuclear physics conversation
Mohamed
because space is a vacuum and anything outside the earth 🌎 can not come back without an act of force applied to it to leave the vacuum and fall down to the earth with a maximum force length of 30kcm per second
Clara