<< Chapter < Page Chapter >> Page >
  • Identify and explain the properties of a projectile, such as acceleration due to gravity, range, maximum height, and trajectory.
  • Determine the location and velocity of a projectile at different points in its trajectory.
  • Apply the principle of independence of motion to solve projectile motion problems.

Projectile motion is the motion    of an object thrown or projected into the air, subject to only the acceleration of gravity. The object is called a projectile    , and its path is called its trajectory    . The motion of falling objects, as covered in Problem-Solving Basics for One-Dimensional Kinematics , is a simple one-dimensional type of projectile motion in which there is no horizontal movement. In this section, we consider two-dimensional projectile motion, such as that of a football or other object for which air resistance     is negligible .

The most important fact to remember here is that motions along perpendicular axes are independent and thus can be analyzed separately. This fact was discussed in Kinematics in Two Dimensions: An Introduction , where vertical and horizontal motions were seen to be independent. The key to analyzing two-dimensional projectile motion is to break it into two motions, one along the horizontal axis and the other along the vertical. (This choice of axes is the most sensible, because acceleration due to gravity is vertical—thus, there will be no acceleration along the horizontal axis when air resistance is negligible.) As is customary, we call the horizontal axis the x -axis and the vertical axis the y -axis. [link] illustrates the notation for displacement, where s size 12{s} {} is defined to be the total displacement and x size 12{x} {} and y size 12{y} {} are its components along the horizontal and vertical axes, respectively. The magnitudes of these vectors are s , x , and y . (Note that in the last section we used the notation A size 12{A} {} to represent a vector with components A x size 12{A rSub { size 8{x} } } {} and A y size 12{A rSub { size 8{y} } } {} . If we continued this format, we would call displacement s size 12{s} {} with components s x size 12{s rSub { size 8{x} } } {} and s y size 12{s rSub { size 8{y} } } {} . However, to simplify the notation, we will simply represent the component vectors as x size 12{x} {} and y size 12{y} {} .)

Of course, to describe motion we must deal with velocity and acceleration, as well as with displacement. We must find their components along the x - and y -axes, too. We will assume all forces except gravity (such as air resistance and friction, for example) are negligible. The components of acceleration are then very simple: a y = g = 9.80 m /s 2 size 12{a rSub { size 8{y} } ="-g"="-9.80" "m/s" rSup { size 8{2} } } {} . (Note that this definition assumes that the upwards direction is defined as the positive direction. If you arrange the coordinate system instead such that the downwards direction is positive, then acceleration due to gravity takes a positive value.) Because gravity is vertical, a x = 0 size 12{a rSub { size 8{x} } } {} . Both accelerations are constant, so the kinematic equations can be used.

Review of kinematic equations (constant a )

x = x 0 + v - t size 12{x=`x rSub { size 8{0} } `+` { bar {v}}t} {}
v - = v 0 + v 2 size 12{ { bar {v}}=` { {v rSub { size 8{0} } +v} over {2} } } {}
v = v 0 + at size 12{v=v rSub { size 8{0} } + ital "at"} {}
x = x 0 + v 0 t + 1 2 at 2 size 12{x=x rSub { size 8{0} } +v rSub { size 8{0} } t+ { {1} over {2} } ital "at" rSup { size 8{2} } } {}
v 2 = v 0 2 + 2 a ( x x 0 ) . size 12{v rSup { size 8{2} } =v rSub { size 8{0} } rSup { size 8{2} } +2a \( x - x rSub { size 8{0} } \) } {}
A soccer player is kicking a soccer ball. The ball travels in a projectile motion and reaches a point whose vertical distance is y and horizontal distance is x. The displacement between the kicking point and the final point is s. The angle made by this displacement vector with x axis is theta.
The total displacement s size 12{s} {} of a soccer ball at a point along its path. The vector s size 12{s} {} has components x size 12{x} {} and y size 12{y} {} along the horizontal and vertical axes. Its magnitude is s size 12{s} {} , and it makes an angle θ size 12{θ} {} with the horizontal.

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask