<< Chapter < Page Chapter >> Page >
  • Outline the invention of a telescope.
  • Describe the working of a telescope.

Telescopes are meant for viewing distant objects, producing an image that is larger than the image that can be seen with the unaided eye. Telescopes gather far more light than the eye, allowing dim objects to be observed with greater magnification and better resolution. Although Galileo is often credited with inventing the telescope, he actually did not. What he did was more important. He constructed several early telescopes, was the first to study the heavens with them, and made monumental discoveries using them. Among these are the moons of Jupiter, the craters and mountains on the Moon, the details of sunspots, and the fact that the Milky Way is composed of vast numbers of individual stars.

[link] (a) shows a telescope made of two lenses, the convex objective and the concave eyepiece, the same construction used by Galileo. Such an arrangement produces an upright image and is used in spyglasses and opera glasses.

Part a of the figure depicts the internal functioning of a telescope; from left to right it has an upright image of a tree, a convex lens objective, a concave lens eyepiece, and a picture of eye where rays enter. Parallel rays strike the objective convex lens, converge; strike the concave eyepiece, and enter the eye. Dotted lines from the striking rays of the eyepiece are drawn backside and join at the beginning of the final image. Part b of the figure, from left to right, has an inverted enlarged image of a tree, a convex objective, a smaller inverted image of a tree, a convex eyepiece and a picture of an eye viewing the image. Rays from a very distant object pass through the objective lens, focus at a focal point f sub o, forming a smaller upside-down image of a tree of height h sub i, converge and pass through the eyepiece to reach the eye. Dotted lines drawn backwards focus at the tip of the final enlarged inverted image of a tree of height h prime sub i, from the rays striking the eyepiece are also shown. An angle theta, subtended by the rays striking the objective lens and an angle, subtended by the telescopic enlarged inverted image are also depicted.
(a) Galileo made telescopes with a convex objective and a concave eyepiece. These produce an upright image and are used in spyglasses. (b) Most simple telescopes have two convex lenses. The objective forms a case 1 image that is the object for the eyepiece. The eyepiece forms a case 2 final image that is magnified.

The most common two-lens telescope, like the simple microscope, uses two convex lenses and is shown in [link] (b). The object is so far away from the telescope that it is essentially at infinity compared with the focal lengths of the lenses ( d o ). The first image is thus produced at d i = f o , as shown in the figure. To prove this, note that

1 d i = 1 f o 1 d o = 1 f o 1 . size 12{ { {1} over {d rSub { size 8{i} } } } = { {1} over {f rSub { size 8{o} } } } - { {1} over {d rSub { size 8{o} } } } = { {1} over {f rSub { size 8{o} } } } - { {1} over { infinity } } } {}

Because 1 / = 0 size 12{ {1} slash { infinity =0} } {} , this simplifies to

1 d i = 1 f o , size 12{ { {1} over {d rSub { size 8{i} } } } = { {1} over {f rSub { size 8{o} } } } } {}

which implies that d i = f o , as claimed. It is true that for any distant object and any lens or mirror, the image is at the focal length.

The first image formed by a telescope objective as seen in [link] (b) will not be large compared with what you might see by looking at the object directly. For example, the spot formed by sunlight focused on a piece of paper by a magnifying glass is the image of the Sun, and it is small. The telescope eyepiece (like the microscope eyepiece) magnifies this first image. The distance between the eyepiece and the objective lens is made slightly less than the sum of their focal lengths so that the first image is closer to the eyepiece than its focal length. That is, d o is less than f e , and so the eyepiece forms a case 2 image that is large and to the left for easy viewing. If the angle subtended by an object as viewed by the unaided eye is θ , and the angle subtended by the telescope image is θ , then the angular magnification     M is defined to be their ratio. That is, M = θ / θ . It can be shown that the angular magnification of a telescope is related to the focal lengths of the objective and eyepiece; and is given by

M = θ θ = f o f e .

The minus sign indicates the image is inverted. To obtain the greatest angular magnification, it is best to have a long focal length objective and a short focal length eyepiece. The greater the angular magnification M size 12{M} {} , the larger an object will appear when viewed through a telescope, making more details visible. Limits to observable details are imposed by many factors, including lens quality and atmospheric disturbance.

Questions & Answers

Calculate the work done by an 85.0-kg man who pushes a crate 4.00 m up along a ramp that makes an angle of 20.0º20.0º with the horizontal. (See [link] .) He exerts a force of 500 N on the crate parallel to the ramp and moves at a constant speed. Be certain to include the work he does on the crate an
Collins Reply
What is thermal heat all about
Abel Reply
why uniform circular motion is called a periodic motion?.
Boniface Reply
when a train start from A & it returns at same station A . what is its acceleration?
Mwdan Reply
what is distance of A to B of the stations and what is the time taken to reach B from A
BELLO
the information provided is not enough
aliyu
Hmmmm maybe the question is logical
yusuf
where are the parameters for calculation
HENRY
there is enough information to calculate an AVERAGE acceleration
Kwok
mistake, there is enough information to calculate an average velocity
Kwok
~\
Abel
what is the unit of momentum
Abel
wha are the types of radioactivity ?
Worku Reply
what are the types of radioactivity
Worku
what is static friction
Golu Reply
It is the opposite of kinetic friction
Mark
static fiction is friction between two surfaces in contact an none of sliding over on another, while Kinetic friction is friction between sliding surfaces in contact.
MINDERIUM
I don't get it,if it's static then there will be no friction.
author
It means that static friction is that friction that most be overcome before a body can move
kingsley
static friction is a force that keeps an object from moving, and it's the opposite of kinetic friction.
author
It is a force a body must overcome in order for the body to move.
Eboh
If a particle accelerator explodes what happens
Eboh
why we see the edge effect in case of the field lines of capacitor?
Arnab
what is wave
Muhammed Reply
what is force
Muhammed
force is something which is responsible for the object to change its position
MINDERIUM
more technically it is the product of mass of an object and Acceleration produced in it
MINDERIUM
wave is disturbance in any medium
iqra
energy is distributed in any medium through particles of medium.
iqra
If a particle accelerator explodes what happens
Eboh Reply
we have to first figure out .... wats a particle accelerator first
Teh
What is surface tension
Subi Reply
The resistive force of surface.
iqra
Who can tutor me on simple harmonic motion
yusuf Reply
on both a string and peldulum?
Anya
spring*
Anya
Yea
yusuf
Do you have a chit-chat contact
yusuf
I dont have social media but i do have an email?
Anya
Which is
yusuf
Where are you chatting from
yusuf
I don't understand the basics of this group
Jimmy
teach him SHM init
Anya
Simple harmonic motion
yusuf
how.an.equipotential.line is two dimension and equipotential surface is three dimension ?
syed Reply
definition of mass of conversion
umezurike Reply
Force equals mass time acceleration. Weight is a force and it can replace force in the equation. The acceleration would be gravity, which is an acceleration. To change from weight to mass divide by gravity (9.8 m/s^2).
Marisa
how many subject is in physics
Adeshina Reply
the write question should be " How many Topics are in O- Level Physics, or other branches of physics.
effiom
how many topic are in physics
Praise
Praise what level are you
yusuf
If u are doing a levels in your first year you do AS topics therefore you do 5 big topic i.e particles radiation, waves and optics, mechanics,materials, electricity. After that you do A level topics like Specific Harmonic motion circular motion astrophysics depends really
Anya
Yeah basics of physics prin8
yusuf
Heat nd Co for a level
yusuf
yh I need someone to explain something im tryna solve . I'll send the question if u down for it
Tamdy Reply
a ripple tank experiment a vibrating plane is used to generate wrinkles in the water .if the distance between two successive point is 3.5cm and the wave travel a distance of 31.5cm find the frequency of the vibration
Tamdy
hallow
Boniface
please send the answer
Boniface
the range of objects and phenomena studied in physics is
Bethel Reply
I don't know please give the answer
Boniface
Practice Key Terms 2

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask